Florida LAKEWATCH Report for Anderson Cue in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

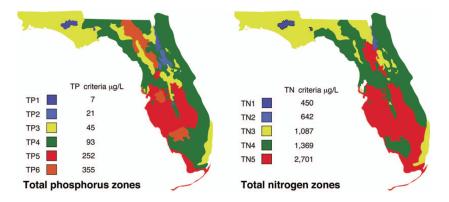
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

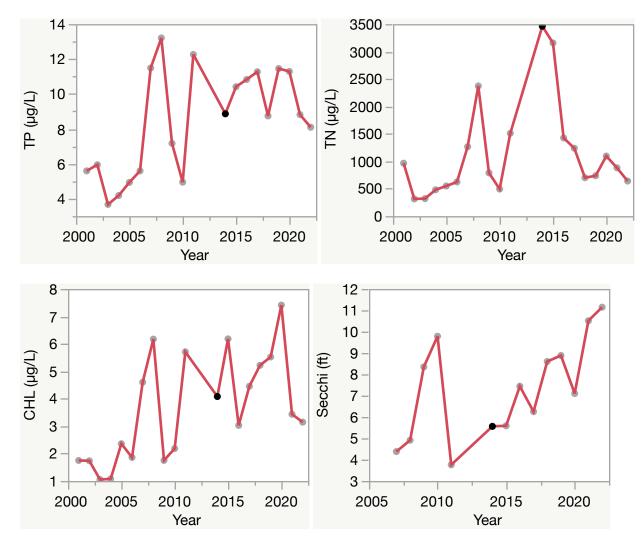

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	4 - 13	8 (20)
Total Nitrogen (µg/L)	313 - 3462	916 (20)
Chlorophyll- uncorrected (µg/L)	1 - 7	3 (20)
Secchi (ft)	3.8 - 11.1	6.9 (14)
Secchi (m)	1.1 - 3.4	2.1 (14)
Color (Pt-Co Units)	3 - 50	12 (20)
Specific Conductance (µS/cm@25 C)	25 - 56	33 (14)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Anderson Cue
GNIS Number	
Latitude	29.6898
Longitude	-82.0063
Water Body Type	Lake
Surface Area (ha and acre)	4.4 ha or 11 acre
Period of Record (year)	2001 to 2022
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	8 (4 to 13)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	916 (313 to 3462)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Anderson Cue trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.33$, p = 0.01), total nitrogen (TN No Trend, $R^2 = 0.05$, p = 0.34), chlorophyll (CHL Increasing, $R^2 = 0.36$, p = 0.00) and Secchi depth (Secchi Increasing, $R^2 = 0.35$, p = 0.02).

Florida LAKEWATCH Report for Annie in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

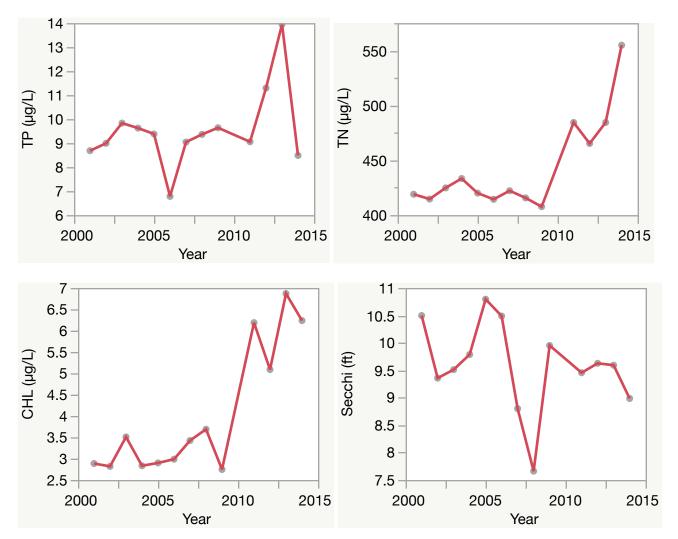

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	7 - 14	9 (13)
Total Nitrogen (µg/L)	408 - 555	441 (13)
Chlorophyll- uncorrected (µg/L)	3 - 7	4 (13)
Secchi (ft)	7.7 - 10.8	9.5 (13)
Secchi (m)	2.3 - 3.3	2.9 (13)
Color (Pt-Co Units)	6 - 10	8 (13)
Specific Conductance (µS/cm@25 C)	49 - 62	55 (7)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Annie
GNIS Number	
Latitude	29.6009
Longitude	-82.0157
Water Body Type	Lake
Surface Area (ha and acre)	9 ha or 23 acre
Period of Record (year)	2001 to 2014
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	9 (7 to 14)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	441 (408 to 555)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Annie trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.17$, p = 0.16), total nitrogen (TN Increasing, $R^2 = 0.58$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.70$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.10$, p = 0.28).

Florida LAKEWATCH Report for Ashley in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

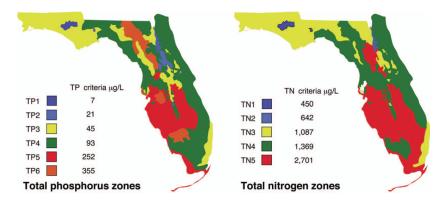
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

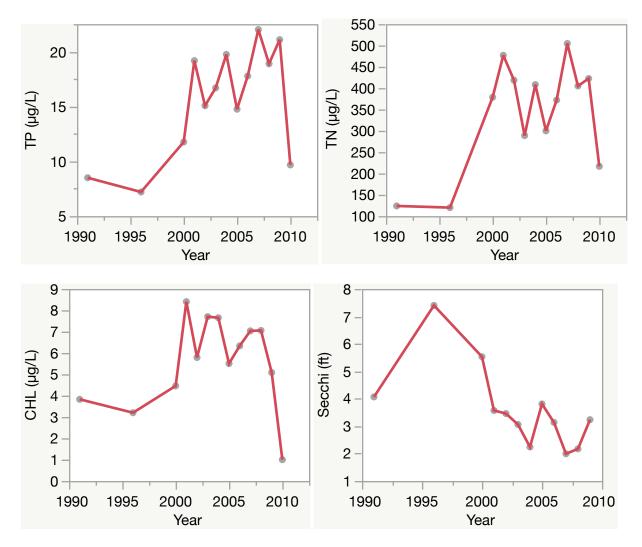

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	7 - 22	15 (13)
Total Nitrogen (µg/L)	120 - 505	313 (13)
Chlorophyll- uncorrected (μ g/L)	1 - 8	5 (13)
Secchi (ft)	2.0 - 7.4	3.4 (12)
Secchi (m)	0.6 - 2.3	1.0 (12)
Color (Pt-Co Units)	1 - 6	3 (9)
Specific Conductance (µS/cm@25 C)	46 - 73	60 (3)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Ashley
GNIS Number	292625
Latitude	29.7047
Longitude	-82.0253
Water Body Type	Lake
Surface Area (ha and acre)	34 ha or 85 acre
Period of Record (year)	1991 to 2010
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	15 (7 to 22)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	313 (120 to 505)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Ashley trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.37$, p = 0.03), total nitrogen (TN No Trend, $R^2 = 0.30$, p = 0.05), chlorophyll (CHL No Trend, $R^2 = 0.02$, p = 0.68) and Secchi depth (Secchi Decreasing, $R^2 = 0.41$, p = 0.02).

Florida LAKEWATCH Report for Banana in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

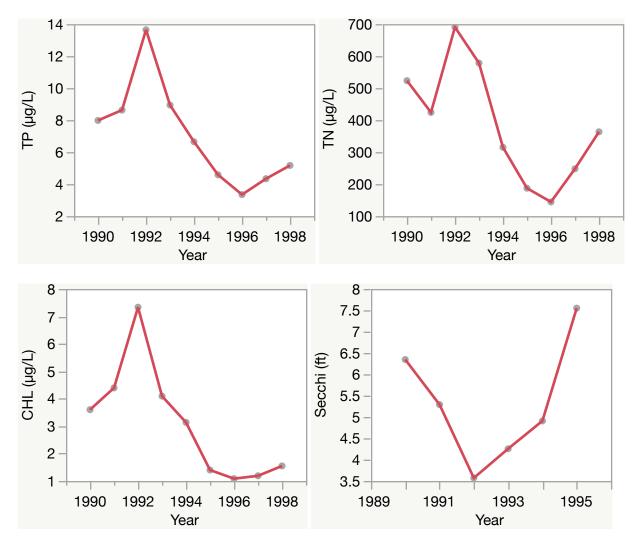

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	3 - 14	6 (9)	
Total Nitrogen (µg/L)	144 - 691	344 (9)	
Chlorophyll- uncorrected (µg/L)	1 - 7	3 (9)	
Secchi (ft)	3.6 - 7.6	5.2 (6)	
Secchi (m)	1.1 - 2.3	1.6 (6)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Banana
GNIS Number	
Latitude	29.4645
Longitude	-81.5901
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 1998
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	6 (3 to 14)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	344 (144 to 691)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Banana trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.49$, p = 0.03), total nitrogen (TN No Trend, $R^2 = 0.43$, p = 0.06), chlorophyll (CHL Decreasing, $R^2 = 0.54$, p = 0.02) and Secchi depth (Secchi No Trend, $R^2 = 0.04$, p = 0.70).

Florida LAKEWATCH Report for Barco in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

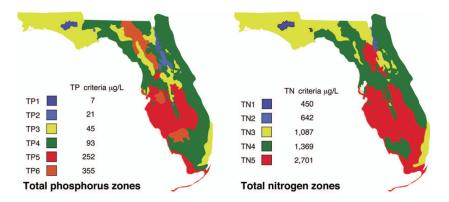
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

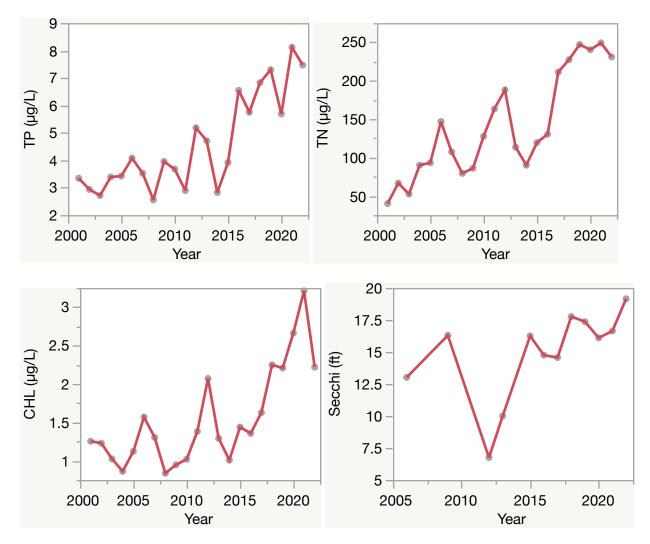

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	3 - 8	4 (22)	
Total Nitrogen (µg/L)	40 - 249	125 (22)	
Chlorophyll- uncorrected (µg/L)	1 - 3	1 (22)	
Secchi (ft)	6.8 - 19.2	14.4 (12)	
Secchi (m)	2.1 - 5.8	4.4 (12)	
Color (Pt-Co Units)	1 - 5	2 (21)	
Specific Conductance (µS/cm@25 C)	27 - 73	41 (16)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Barco
GNIS Number	278102
Latitude	29.6754
Longitude	-82.0087
Water Body Type	Lake
Surface Area (ha and acre)	13 ha or 31 acre
Period of Record (year)	2001 to 2022
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	4 (3 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	125 (40 to 249)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Barco trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.69$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.75$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.55$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.32$, p = 0.06).

Florida LAKEWATCH Report for Bell in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	11 - 12	12 (2)	
Total Nitrogen (µg/L)	532 - 601	566 (2)	
Chlorophyll- uncorrected (µg/L)	4 - 5	4 (2)	
Secchi (ft)	5.4 - 6.3	5.9 (2)	
Secchi (m)	1.6 - 1.9	1.8 (2)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Bell
GNIS Number	295032
Latitude	29.4299
Longitude	-81.5367
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 1991
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	12 (11 to 12)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	566 (532 to 601)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Blue in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

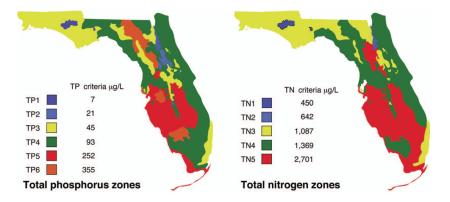
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

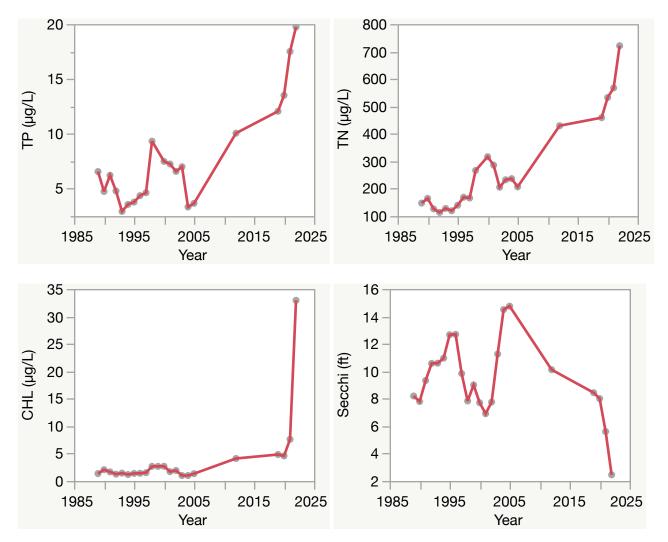

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	3 - 20	7 (21)
Total Nitrogen (µg/L)	113 - 721	233 (21)
Chlorophyll- uncorrected (µg/L)	1 - 33	2 (22)
Secchi (ft)	2.4 - 14.8	8.9 (22)
Secchi (m)	0.7 - 4.5	2.7 (22)
Color (Pt-Co Units)	1 - 18	6 (9)
Specific Conductance (µS/cm@25 C)	31 - 51	36 (5)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Blue
GNIS Number	279049
Latitude	29.5118
Longitude	-82.0401
Water Body Type	Lake
Surface Area (ha and acre)	4 ha or 10 acre
Period of Record (year)	1989 to 2022
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	7 (3 to 20)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	233 (113 to 721)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Blue trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.70$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.87$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.35$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.16$, p = 0.07).

Florida LAKEWATCH Report for Boll Green in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

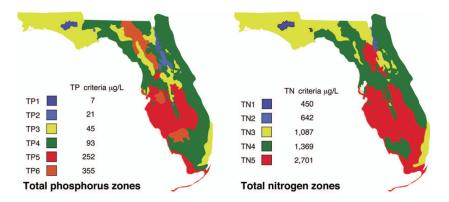
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	6 - 7	7 (2)
Total Nitrogen (µg/L)	201 - 271	233 (2)
Chlorophyll- uncorrected (µg/L)	2 - 2	2 (2)
Secchi (ft)	9.5 - 10.4	9.9 (2)
Secchi (m)	2.9 - 3.2	3.0 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Boll Green
GNIS Number	279191
Latitude	29.6330
Longitude	-81.8408
Water Body Type	Lake
Surface Area (ha and acre)	11 ha or 28 acre
Period of Record (year)	1990 to 1991
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	7 (6 to 7)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	233 (201 to 271)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Brantley in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

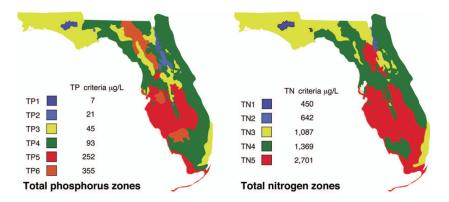
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

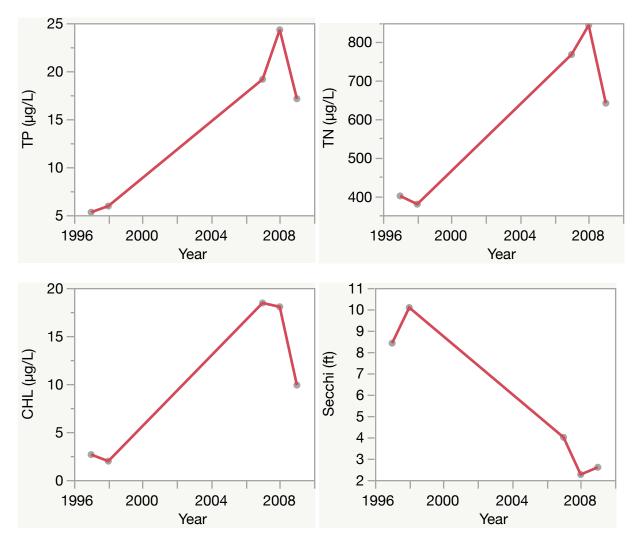

Parameter	Minimum and Maximum Grand Geometric	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	5 - 24	12 (5)
Total Nitrogen (µg/L)	379 - 845	575 (5)
Chlorophyll- uncorrected (µg/L)	2 - 18	7 (5)
Secchi (ft)	2.3 - 10.1	4.6 (5)
Secchi (m)	0.7 - 3.1	1.4 (5)
Color (Pt-Co Units)	7 - 14	10 (3)
Specific Conductance (µS/cm@25 C)	47 - 63	53 (3)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Brantley
GNIS Number	279340
Latitude	29.6853
Longitude	-81.9481
Water Body Type	Lake
Surface Area (ha and acre)	131 ha or 324 acre
Period of Record (year)	1997 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	12 (5 to 24)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	575 (379 to 845)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Brantley trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.87$, p = 0.02), total nitrogen (TN Increasing, $R^2 = 0.81$, p = 0.04), chlorophyll (CHL No Trend, $R^2 = 0.72$, p = 0.07) and Secchi depth (Secchi Decreasing, $R^2 = 0.93$, p = 0.01).

Florida LAKEWATCH Report for Brantley 2 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

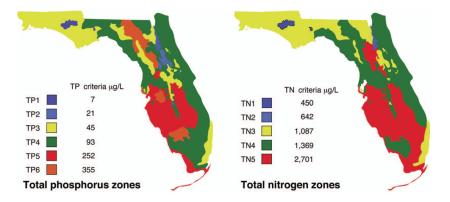
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum Grand Geometri	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 20	14 (3)
Total Nitrogen (µg/L)	246 - 707	416 (3)
Chlorophyll- uncorrected (µg/L)	4 - 12	8 (3)
Secchi (ft)	1.5 - 2.1	1.7 (3)
Secchi (m)	0.5 - 0.6	0.5 (3)
Color (Pt-Co Units)	4 - 4	4 (3)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Brantley 2
GNIS Number	279340
Latitude	29.6828
Longitude	-81.9487
Water Body Type	Lake
Surface Area (ha and acre)	131 ha or 324 acre
Period of Record (year)	2001 to 2003
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	14 (9 to 20)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	416 (246 to 707)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Broward in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

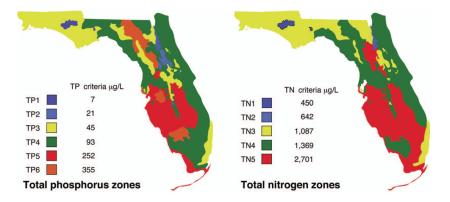
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

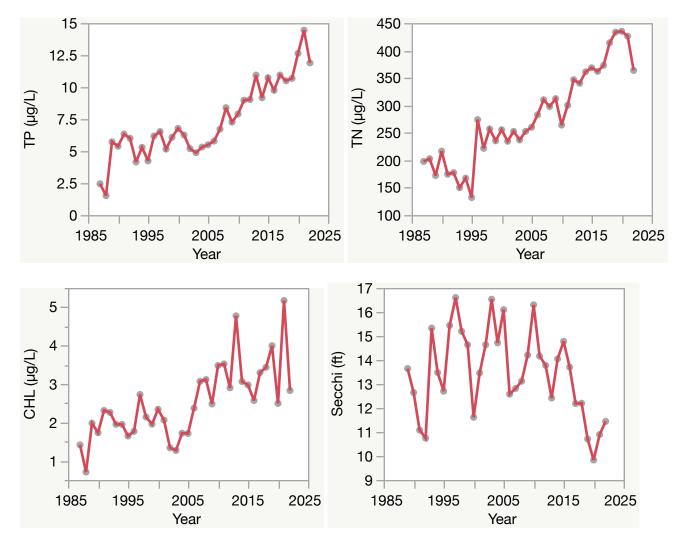

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	2 - 14	7 (36)
Total Nitrogen (µg/L)	132 - 435	267 (36)
Chlorophyll- uncorrected (µg/L)	1 - 5	2 (36)
Secchi (ft)	9.8 - 16.6	13.3 (34)
Secchi (m)	3.0 - 5.1	4.1 (34)
Color (Pt-Co Units)	5 - 29	9 (21)
Specific Conductance (µS/cm@25 C)	63 - 103	89 (15)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Broward
GNIS Number	279466
Latitude	29.5023
Longitude	-81.5913
Water Body Type	Lake
Surface Area (ha and acre)	191 ha or 471 acre
Period of Record (year)	1987 to 2022
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	7 (2 to 14)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	267 (132 to 435)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Broward trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.80$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.86$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.52$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.08$, p = 0.10).

Florida LAKEWATCH Report for Chipco in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

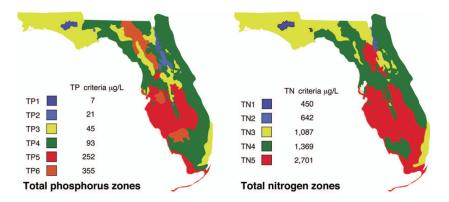
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

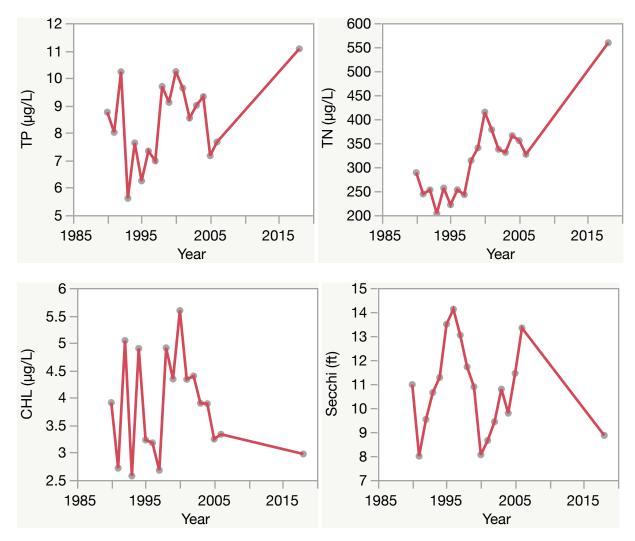

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	6 - 11	8 (18)
Total Nitrogen (µg/L)	203 - 559	306 (18)
Chlorophyll- uncorrected (µg/L)	3 - 6	4 (18)
Secchi (ft)	8.0 - 14.1	10.6 (18)
Secchi (m)	2.4 - 4.3	3.2 (18)
Color (Pt-Co Units)	5 - 11	7 (6)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Chipco
GNIS Number	308443
Latitude	29.6293
Longitude	-81.8930
Water Body Type	Lake
Surface Area (ha and acre)	13 ha or 33 acre
Period of Record (year)	1990 to 2018
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	8 (6 to 11)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	306 (203 to 559)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Chipco trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.17$, p = 0.09), total nitrogen (TN Increasing, $R^2 = 0.75$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.01$, p = 0.69) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.59).

Florida LAKEWATCH Report for Church in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

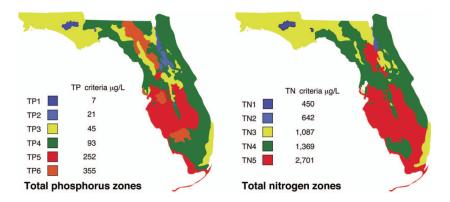
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	2 - 13	5 (3)
Total Nitrogen (µg/L)	127 - 168	141 (3)
Chlorophyll- uncorrected (μ g/L)	2 - 9	5 (3)
Secchi (ft)	10.7 - 15.3	12.8 (3)
Secchi (m)	3.3 - 4.7	3.9 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Church
GNIS Number	280453
Latitude	29.6516
Longitude	-81.8685
Water Body Type	Lake
Surface Area (ha and acre)	9 ha or 21 acre
Period of Record (year)	1988 to 1991
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	5 (2 to 13)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	141 (127 to 168)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Clear in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

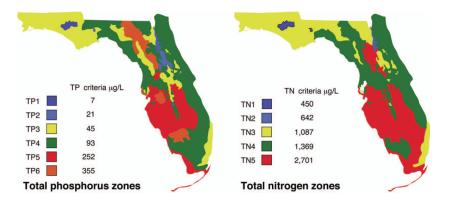
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

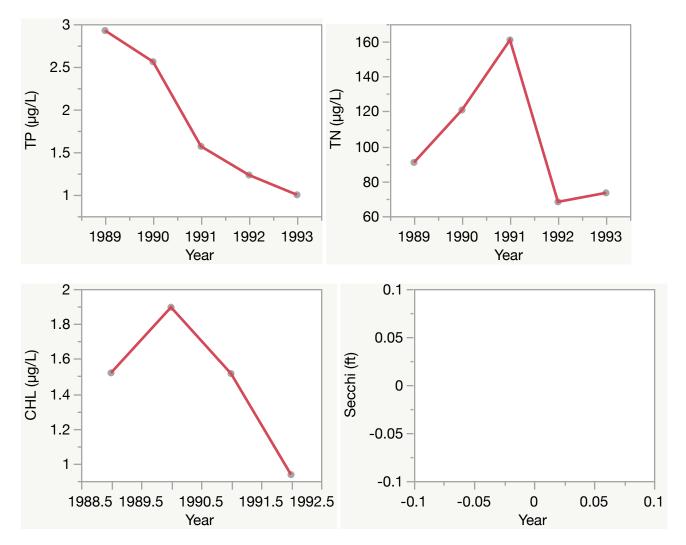

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	1 - 3	2 (5)	
Total Nitrogen (µg/L)	68 - 161	98 (5)	
Chlorophyll- uncorrected (µg/L)	1 - 2	1 (4)	
Secchi (ft)	-	(0)	
Secchi (m)	-	(0)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Clear
GNIS Number	280533
Latitude	29.4229
Longitude	-81.5572
Water Body Type	Lake
Surface Area (ha and acre)	50 ha or 123 acre
Period of Record (year)	1989 to 1993
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	2 (1 to 3)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	98 (68 to 161)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Clear trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.94$, p = 0.01), total nitrogen (TN No Trend, $R^2 = 0.13$, p = 0.55), chlorophyll (CHL No Trend, $R^2 = 0.48$, p = 0.31) and Secchi depth (Secchi , $R^2 =$, p =).

Florida LAKEWATCH Report for Clearwater in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

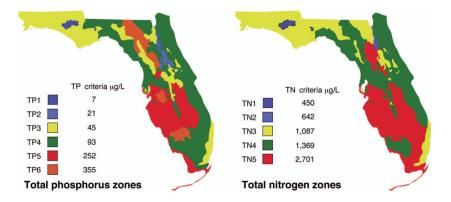
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	27 - 34	31 (3)
Total Nitrogen (µg/L)	631 - 674	649 (3)
Chlorophyll- uncorrected (µg/L)	22 - 28	24 (3)
Secchi (ft)	2.1 - 3.4	2.8 (3)
Secchi (m)	0.6 - 1.0	0.8 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Clearwater
GNIS Number	280555
Latitude	29.6672
Longitude	-81.8816
Water Body Type	Lake
Surface Area (ha and acre)	15 ha or 37 acre
Period of Record (year)	1989 to 1991
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	31 (27 to 34)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	649 (631 to 674)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Clearwater 2 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

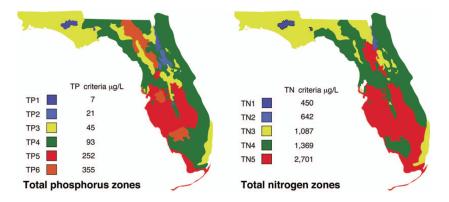
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

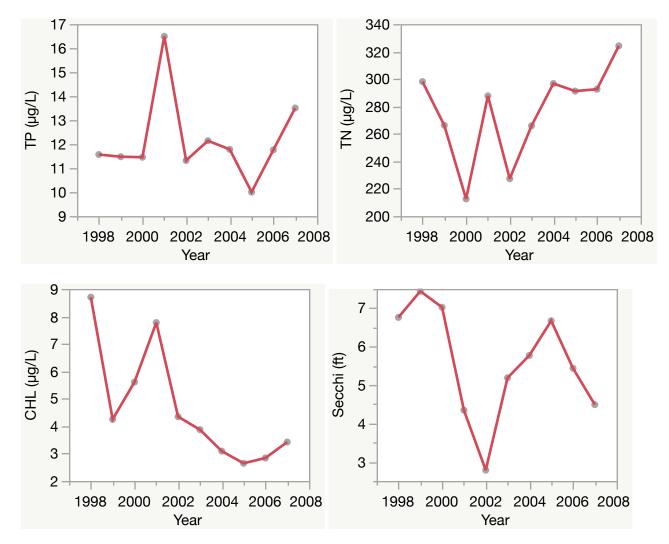

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	10 - 16	12 (10)
Total Nitrogen (µg/L)	213 - 324	274 (10)
Chlorophyll- uncorrected (µg/L)	3 - 9	4 (10)
Secchi (ft)	2.8 - 7.4	5.4 (10)
Secchi (m)	0.8 - 2.3	1.6 (10)
Color (Pt-Co Units)	2 - 7	4 (7)
Specific Conductance (µS/cm@25 C)	60 - 60	60 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Clearwater 2
GNIS Number	
Latitude	29.5796
Longitude	-81.9529
Water Body Type	Lake
Surface Area (ha and acre)	10 ha or 25 acre
Period of Record (year)	1998 to 2007
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	12 (10 to 16)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	274 (213 to 324)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Clearwater 2 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.00$, p = 0.97), total nitrogen (TN No Trend, $R^2 = 0.22$, p = 0.17), chlorophyll (CHL Decreasing, $R^2 = 0.58$, p = 0.01) and Secchi depth (Secchi No Trend, $R^2 = 0.14$, p = 0.29).

Florida LAKEWATCH Report for Como in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

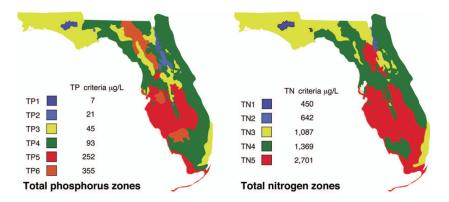
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

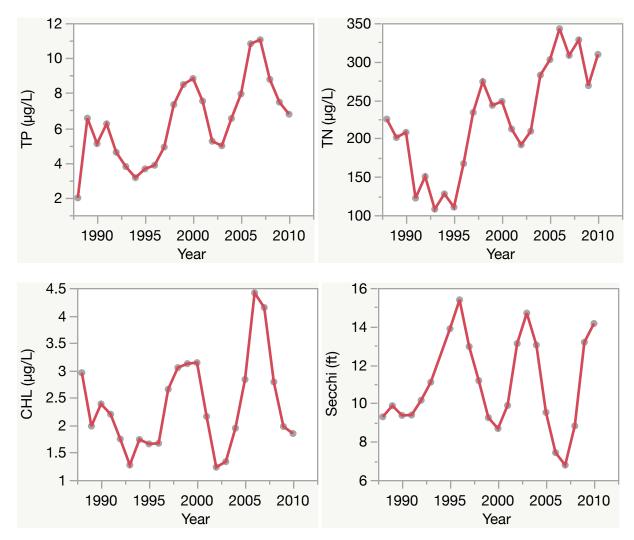

Parameter	Minimum and Maximum Grand Geometric	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	2 - 11	6 (23)
Total Nitrogen (µg/L)	108 - 343	213 (23)
Chlorophyll- uncorrected (µg/L)	1 - 4	2 (23)
Secchi (ft)	6.8 - 15.4	10.7 (22)
Secchi (m)	2.1 - 4.7	3.3 (22)
Color (Pt-Co Units)	2 - 7	5 (10)
Specific Conductance (µS/cm@25 C)	69 - 79	75 (4)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Como
GNIS Number	295009
Latitude	29.4748
Longitude	-81.5800
Water Body Type	Lake
Surface Area (ha and acre)	99 ha or 245 acre
Period of Record (year)	1988 to 2010
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	6 (2 to 11)
TN Zone	TN3
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	213 (108 to 343)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Como trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.44$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.55$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.07$, p = 0.24) and Secchi depth (Secchi No Trend, $R^2 = 0.01$, p = 0.70).

Florida LAKEWATCH Report for Cowpen in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

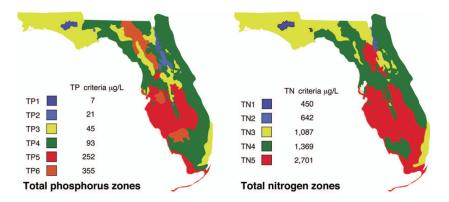
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

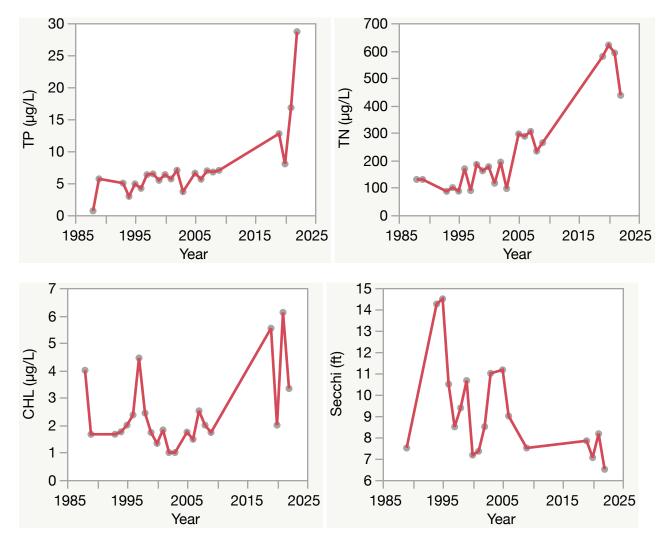

Parameter	Minimum and Maximum Grand Geometric	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	1 - 29	6 (22)
Total Nitrogen (µg/L)	87 - 620	198 (22)
Chlorophyll- uncorrected (µg/L)	1 - 6	2 (22)
Secchi (ft)	6.5 - 14.5	9.0 (18)
Secchi (m)	2.0 - 4.4	2.7 (18)
Color (Pt-Co Units)	1 - 19	6 (10)
Specific Conductance (µS/cm@25 C)	26 - 70	47 (6)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Cowpen
GNIS Number	305516
Latitude	29.6039
Longitude	-82.0023
Water Body Type	Lake
Surface Area (ha and acre)	256 ha or 634 acre
Period of Record (year)	1988 to 2022
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	6 (1 to 29)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	198 (87 to 620)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Cowpen trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.57$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.81$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.16$, p = 0.07) and Secchi depth (Secchi Decreasing, $R^2 = 0.25$, p = 0.03).

Florida LAKEWATCH Report for Crescent North in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

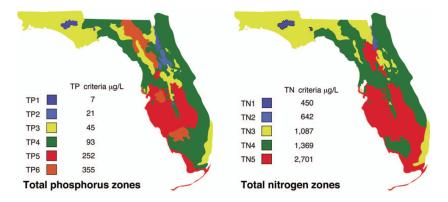
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

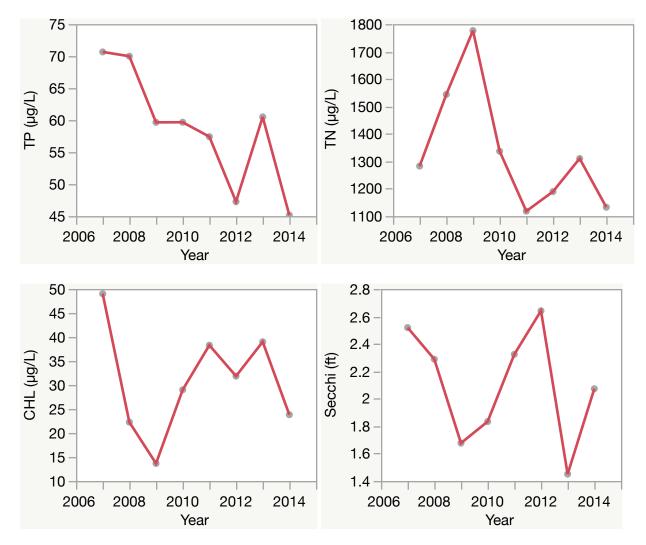

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	45 - 71	58 (8)
Total Nitrogen (µg/L)	1118 - 1777	1321 (8)
Chlorophyll- uncorrected (µg/L)	14 - 49	29 (8)
Secchi (ft)	1.5 - 2.6	2.1 (8)
Secchi (m)	0.4 - 0.8	0.6 (8)
Color (Pt-Co Units)	40 - 280	85 (8)
Specific Conductance (µS/cm@25 C)	446 - 940	717 (8)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Crescent North
GNIS Number	281036
Latitude	29.4478
Longitude	-81.4888
Water Body Type	Lake
Surface Area (ha and acre)	6514 ha or 15960 acre
Period of Record (year)	2007 to 2014
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	58 (45 to 71)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1321 (1118 to 1777)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Crescent North trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.71$, p = 0.01), total nitrogen (TN No Trend, $R^2 = 0.30$, p = 0.16), chlorophyll (CHL No Trend, $R^2 = 0.01$, p = 0.86) and Secchi depth (Secchi No Trend, $R^2 = 0.07$, p = 0.51).

Florida LAKEWATCH Report for Crescent South in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

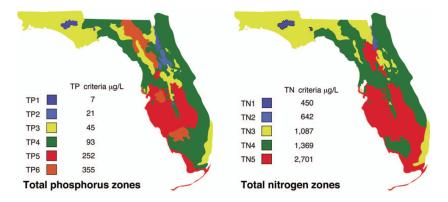
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

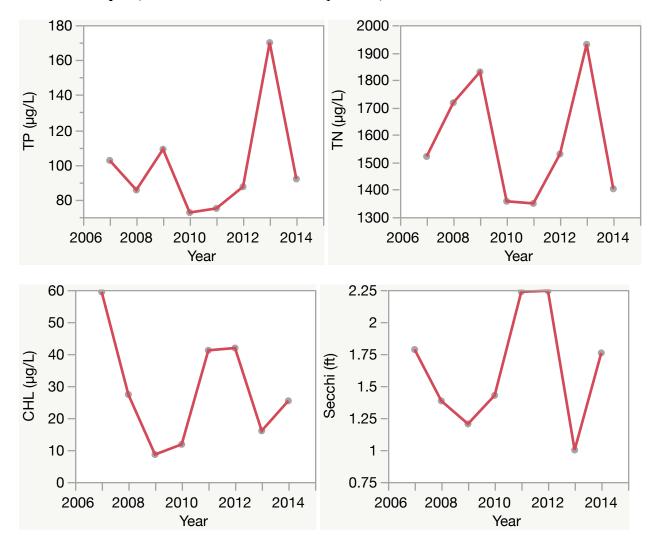

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	73 - 170	96 (8)
Total Nitrogen (µg/L)	1350 - 1930	1567 (8)
Chlorophyll- uncorrected (µg/L)	9 - 59	24 (8)
Secchi (ft)	1.0 - 2.2	1.6 (8)
Secchi (m)	0.3 - 0.7	0.5 (8)
Color (Pt-Co Units)	48 - 275	98 (7)
Specific Conductance (µS/cm@25 C)	388 - 920	646 (7)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Crescent South
GNIS Number	281036
Latitude	29.4007
Longitude	-81.4783
Water Body Type	Lake
Surface Area (ha and acre)	6514 ha or 15960 acre
Period of Record (year)	2007 to 2014
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	96 (73 to 170)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1567 (1350 to 1930)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Crescent South trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.07$, p = 0.52), total nitrogen (TN No Trend, $R^2 = 0.01$, p = 0.84), chlorophyll (CHL No Trend, $R^2 = 0.08$, p = 0.51) and Secchi depth (Secchi No Trend, $R^2 = 0.01$, p = 0.78).

Florida LAKEWATCH Report for East in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

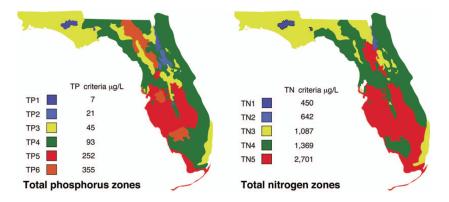
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	24 - 24	24 (1)	
Total Nitrogen (µg/L)	790 - 790	790 (1)	
Chlorophyll- uncorrected (μ g/L)	6 - 6	6 (1)	
Secchi (ft)	-	(0)	
Secchi (m)	-	(0)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	East
GNIS Number	281996
Latitude	29.6278
Longitude	-81.9649
Water Body Type	Lake
Surface Area (ha and acre)	10 ha or 24 acre
Period of Record (year)	1990 to 1990
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	24 (24 to 24)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	790 (790 to 790)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for East Twin in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

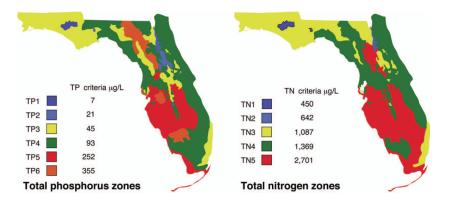
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

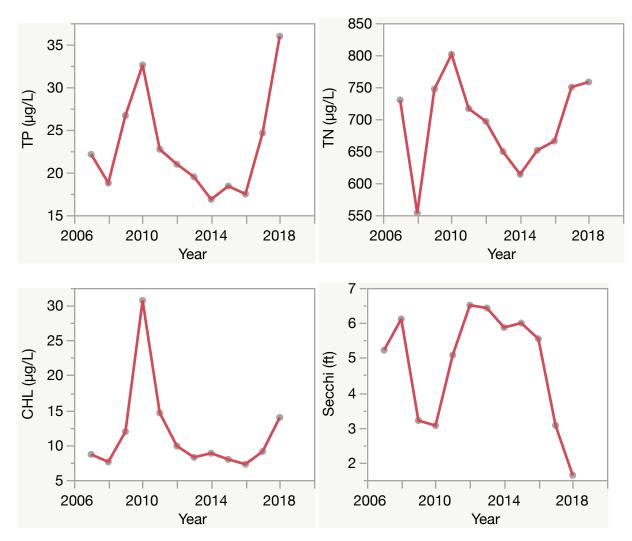

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	17 - 36	22 (12)
Total Nitrogen (µg/L)	553 - 801	691 (12)
Chlorophyll- uncorrected (µg/L)	7 - 31	11 (12)
Secchi (ft)	1.6 - 6.5	4.5 (12)
Secchi (m)	0.5 - 2.0	1.4 (12)
Color (Pt-Co Units)	32 - 183	58 (12)
Specific Conductance (µS/cm@25 C)	60 - 75	69 (12)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	East Twin
GNIS Number	
Latitude	29.6214
Longitude	-81.8525
Water Body Type	Lake
Surface Area (ha and acre)	45 ha or 110 acre
Period of Record (year)	2007 to 2018
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	22 (17 to 36)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	691 (553 to 801)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake East Twin trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.74), total nitrogen (TN No Trend, $R^2 = 0.01$, p = 0.82), chlorophyll (CHL No Trend, $R^2 = 0.03$, p = 0.57) and Secchi depth (Secchi No Trend, $R^2 = 0.07$, p = 0.42).

Florida LAKEWATCH Report for English in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

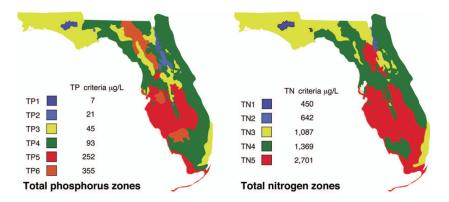
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	13 - 18	16 (4)
Total Nitrogen (µg/L)	724 - 870	788 (4)
Chlorophyll- uncorrected (µg/L)	9 - 16	12 (4)
Secchi (ft)	3.8 - 5.0	4.5 (3)
Secchi (m)	1.2 - 1.5	1.4 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	English
GNIS Number	295026
Latitude	29.4235
Longitude	-81.5332
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 1993
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	16 (13 to 18)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	788 (724 to 870)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Enslow in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

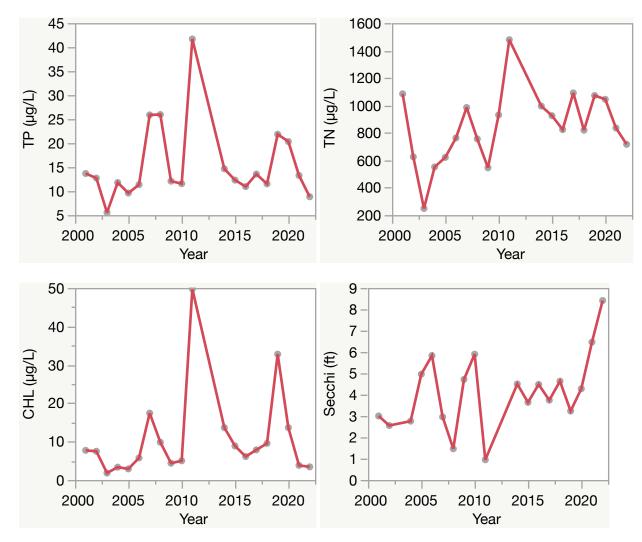

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	6 - 42	14 (20)
Total Nitrogen (µg/L)	249 - 1479	799 (20)
Chlorophyll- uncorrected (µg/L)	2 - 50	8 (20)
Secchi (ft)	0.9 - 8.4	3.7 (19)
Secchi (m)	0.3 - 2.6	1.1 (19)
Color (Pt-Co Units)	3 - 56	19 (20)
Specific Conductance (µS/cm@25 C)	15 - 46	26 (14)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Enslow
GNIS Number	282230
Latitude	29.6974
Longitude	-81.9446
Water Body Type	Lake
Surface Area (ha and acre)	63.6 ha or 159 acre
Period of Record (year)	2001 to 2022
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	14 (6 to 42)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	799 (249 to 1479)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Enslow trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.00$, p = 0.80), total nitrogen (TN No Trend, $R^2 = 0.13$, p = 0.12), chlorophyll (CHL No Trend, $R^2 = 0.03$, p = 0.47) and Secchi depth (Secchi Increasing, $R^2 = 0.21$, p = 0.05).

Florida LAKEWATCH Report for Fanny in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

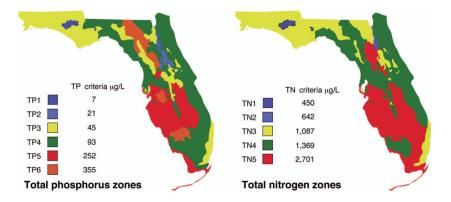
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

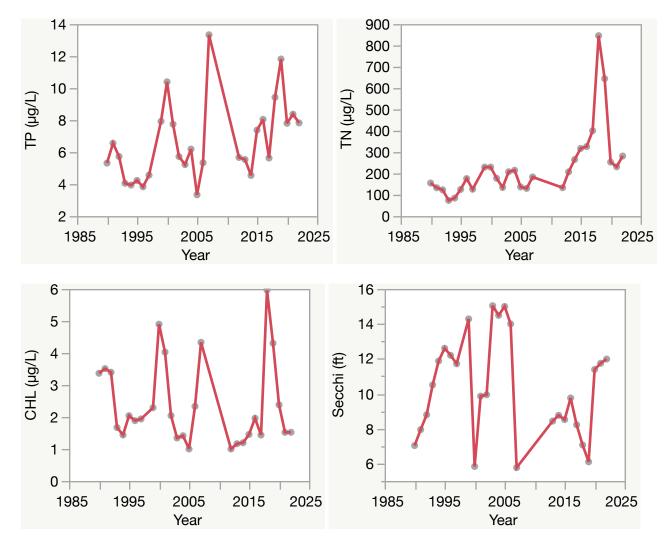

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	3 - 13	6 (28)
Total Nitrogen (µg/L)	74 - 846	199 (28)
Chlorophyll- uncorrected (µg/L)	1 - 6	2 (28)
Secchi (ft)	5.8 - 15.0	9.9 (27)
Secchi (m)	1.8 - 4.6	3.0 (27)
Color (Pt-Co Units)	2 - 126	6 (15)
Specific Conductance (µS/cm@25 C)	48 - 122	77 (12)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Fanny
GNIS Number	305656
Latitude	29.5605
Longitude	-81.9873
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 2022
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	6 (3 to 13)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	199 (74 to 846)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Fanny trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.19$, p = 0.02), total nitrogen (TN Increasing, $R^2 = 0.38$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.01$, p = 0.63) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.53).

Florida LAKEWATCH Report for Faye in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	22 - 22	22 (1)	
Total Nitrogen (µg/L)	609 - 609	609 (1)	
Chlorophyll- uncorrected (µg/L)	14 - 14	14 (1)	
Secchi (ft)	4.9 - 4.9	4.9 (1)	
Secchi (m)	1.5 - 1.5	1.5 (1)	
Color (Pt-Co Units)	32 - 32	32 (1)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Faye
GNIS Number	308454
Latitude	29.6440
Longitude	-81.8763
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2006 to 2006
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	22 (22 to 22)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	609 (609 to 609)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Galilee in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

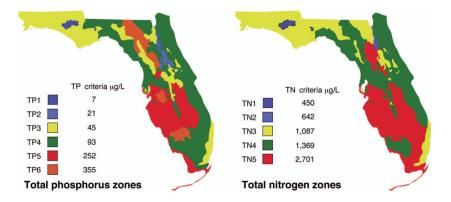
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	15 - 15	15 (1)	
Total Nitrogen (µg/L)	230 - 230	230 (1)	
Chlorophyll- uncorrected (µg/L)	10 - 10	10 (1)	
Secchi (ft)	3.8 - 3.8	3.8 (1)	
Secchi (m)	1.1 - 1.1	1.1 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Galilee
GNIS Number	305714
Latitude	29.6228
Longitude	-81.9348
Water Body Type	Lake
Surface Area (ha and acre)	33.2 ha or 83 acre
Period of Record (year)	2003 to 2003
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	15 (15 to 15)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	230 (230 to 230)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for George in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

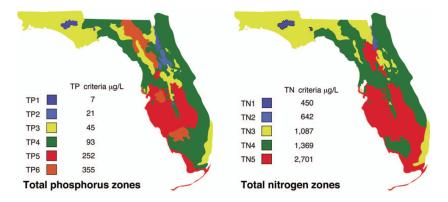
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	45 - 57	50 (4)	
Total Nitrogen (µg/L)	843 - 1227	1106 (4)	
Chlorophyll- uncorrected (µg/L)	31 - 39	35 (4)	
Secchi (ft)	2.2 - 2.8	2.5 (4)	
Secchi (m)	0.7 - 0.9	0.8 (4)	
Color (Pt-Co Units)	66 - 111	85 (3)	
Specific Conductance (µS/cm@25 C)	744 - 1075	907 (3)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	George
GNIS Number	305722
Latitude	29.3242
Longitude	-81.6424
Water Body Type	Lake
Surface Area (ha and acre)	1869.9 ha or 46000 acre
Period of Record (year)	1995 to 2014
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	50 (45 to 57)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1106 (843 to 1227)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for George East in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

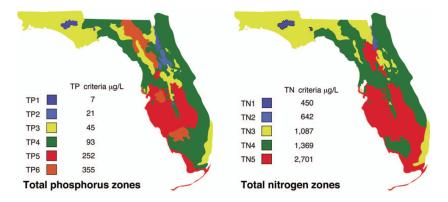
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	50 - 88	62 (4)	
Total Nitrogen (µg/L)	1121 - 1377	1296 (4)	
Chlorophyll- uncorrected (µg/L)	38 - 79	52 (4)	
Secchi (ft)	1.4 - 2.0	1.7 (4)	
Secchi (m)	0.4 - 0.6	0.5 (4)	
Color (Pt-Co Units)	37 - 37	37 (1)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	George East
GNIS Number	305722
Latitude	29.3143
Longitude	-81.5675
Water Body Type	Lake
Surface Area (ha and acre)	1869.9 ha or 46000 acre
Period of Record (year)	1998 to 2001
Lake Trophic Status (CHL)	Hypereutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	62 (50 to 88)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1296 (1121 to 1377)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for George South in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

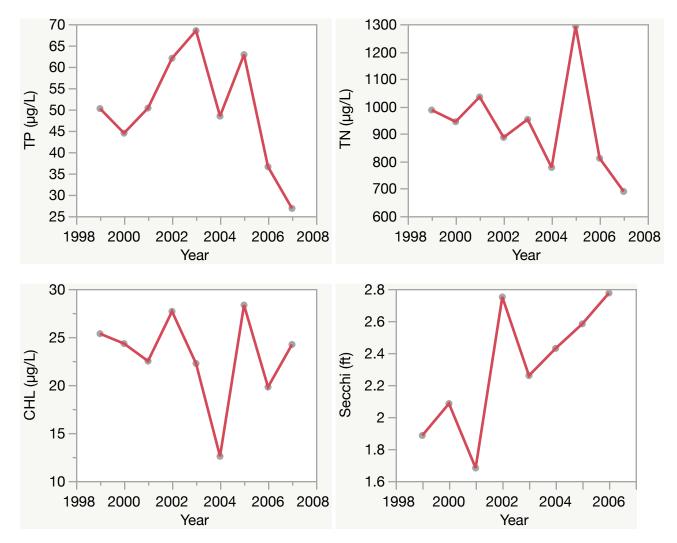

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	27 - 68	48 (9)
Total Nitrogen (µg/L)	690 - 1293	917 (9)
Chlorophyll- uncorrected (µg/L)	13 - 28	22 (9)
Secchi (ft)	1.7 - 2.8	2.3 (8)
Secchi (m)	0.5 - 0.8	0.7 (8)
Color (Pt-Co Units)	34 - 126	58 (6)
Specific Conductance (µS/cm@25 C)	1452 - 1452	1452 (1)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	George South
GNIS Number	305722
Latitude	29.2231
Longitude	-81.5937
Water Body Type	Lake
Surface Area (ha and acre)	1869.9 ha or 46000 acre
Period of Record (year)	1999 to 2007
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	48 (27 to 68)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	917 (690 to 1293)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake George South trend plots of year by average. The R² value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R² the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, R² = 0.13, p = 0.33), total nitrogen (TN No Trend, R² = 0.10, p = 0.42), chlorophyll (CHL No Trend, R² = 0.04, p = 0.59) and Secchi depth (Secchi Increasing, R² = 0.58, p = 0.03).

Florida LAKEWATCH Report for Georges in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

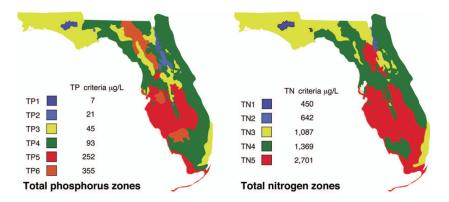
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

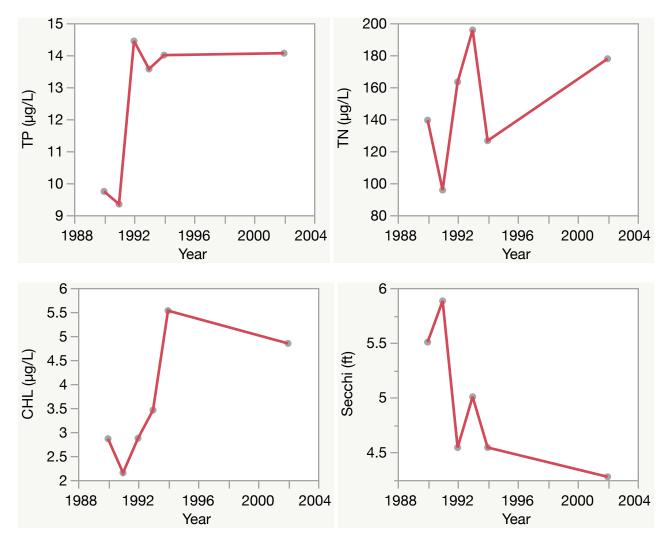

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 14	12 (6)
Total Nitrogen (µg/L)	96 - 196	146 (6)
Chlorophyll- uncorrected (μ g/L)	2 - 6	3 (6)
Secchi (ft)	4.3 - 5.9	4.9 (6)
Secchi (m)	1.3 - 1.8	1.5 (6)
Color (Pt-Co Units)	2 - 2	2 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Georges
GNIS Number	283032
Latitude	29.7980
Longitude	-81.8493
Water Body Type	Lake
Surface Area (ha and acre)	318 ha or 785 acre
Period of Record (year)	1990 to 2002
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	12 (9 to 14)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	146 (96 to 196)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Georges trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.31$, p = 0.25), total nitrogen (TN No Trend, $R^2 = 0.20$, p = 0.37), chlorophyll (CHL No Trend, $R^2 = 0.45$, p = 0.14) and Secchi depth (Secchi No Trend, $R^2 = 0.51$, p = 0.11).

Florida LAKEWATCH Report for Gillis in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

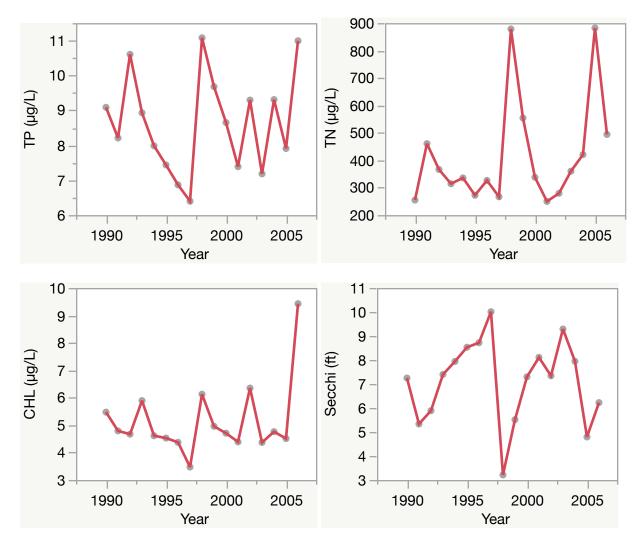

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	6 - 11	9 (17)	
Total Nitrogen (µg/L)	250 - 882	383 (17)	
Chlorophyll- uncorrected (µg/L)	3 - 9	5 (17)	
Secchi (ft)	3.2 - 10.0	6.9 (17)	
Secchi (m)	1.0 - 3.1	2.1 (17)	
Color (Pt-Co Units)	3 - 22	6 (6)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Gillis
GNIS Number	305726
Latitude	29.5687
Longitude	-81.9855
Water Body Type	Lake
Surface Area (ha and acre)	23 ha or 58 acre
Period of Record (year)	1990 to 2006
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	9 (6 to 11)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	383 (250 to 882)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Gillis trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.77), total nitrogen (TN No Trend, $R^2 = 0.12$, p = 0.18), chlorophyll (CHL No Trend, $R^2 = 0.09$, p = 0.25) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.97).

Florida LAKEWATCH Report for Goose in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

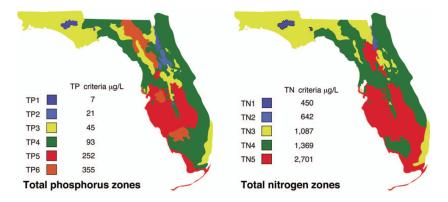
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

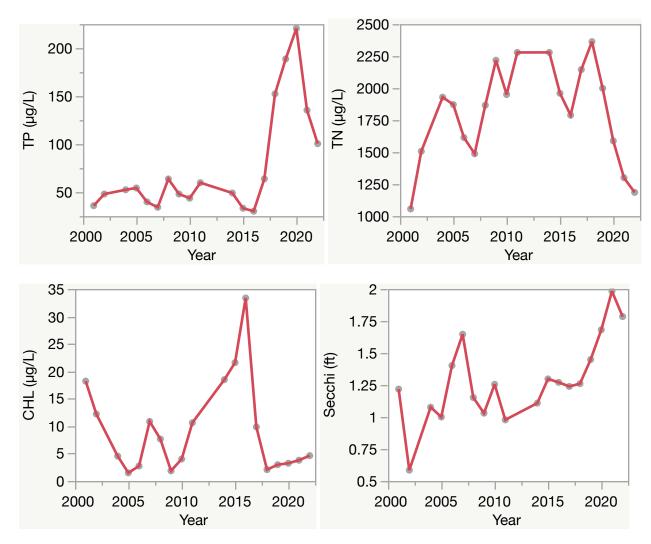

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	30 - 221	63 (19)	
Total Nitrogen (µg/L)	1056 - 2363	1768 (19)	
Chlorophyll- uncorrected (µg/L)	1 - 33	6 (19)	
Secchi (ft)	0.6 - 2.0	1.2 (19)	
Secchi (m)	0.2 - 0.6	0.4 (19)	
Color (Pt-Co Units)	36 - 536	260 (19)	
Specific Conductance (µS/cm@25 C)	53 - 86	65 (14)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Goose
GNIS Number	283194
Latitude	29.7001
Longitude	-81.9812
Water Body Type	Lake
Surface Area (ha and acre)	79.6 ha or 199 acre
Period of Record (year)	2001 to 2022
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	63 (30 to 221)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1768 (1056 to 2363)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Goose trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.43$, p = 0.00), total nitrogen (TN No Trend, $R^2 = 0.01$, p = 0.62), chlorophyll (CHL No Trend, $R^2 = 0.00$, p = 0.86) and Secchi depth (Secchi Increasing, $R^2 = 0.42$, p = 0.00).

Florida LAKEWATCH Report for Grandin in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

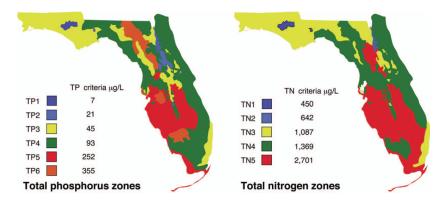
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

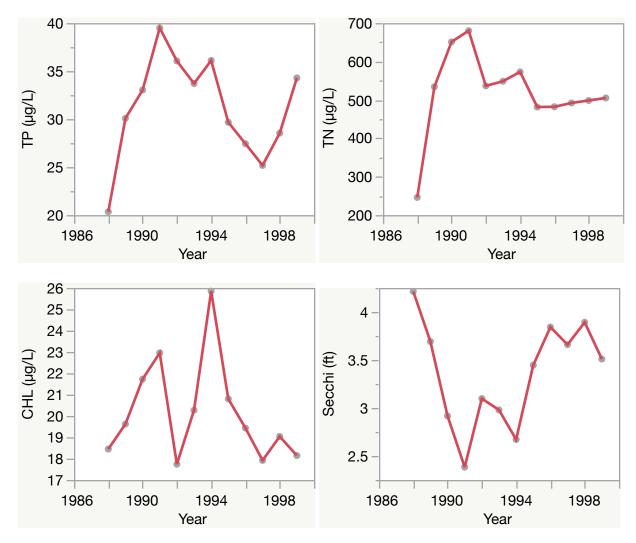

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	20 - 39	31 (12)	
Total Nitrogen (µg/L)	246 - 680	506 (12)	
Chlorophyll- uncorrected (µg/L)	18 - 26	20 (12)	
Secchi (ft)	2.4 - 4.2	3.3 (12)	
Secchi (m)	0.7 - 1.3	1.0 (12)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Grandin
GNIS Number	283279
Latitude	29.6819
Longitude	-81.8808
Water Body Type	Lake
Surface Area (ha and acre)	126 ha or 311 acre
Period of Record (year)	1988 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	31 (20 to 39)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	506 (246 to 680)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Grandin trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.00$, p = 0.96), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.92), chlorophyll (CHL No Trend, $R^2 = 0.04$, p = 0.53) and Secchi depth (Secchi No Trend, $R^2 = 0.03$, p = 0.60).

Florida LAKEWATCH Report for Green Pond in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

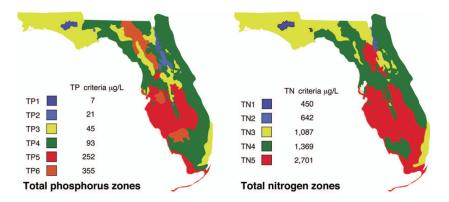
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	5 - 8	6 (3)	
Total Nitrogen (µg/L)	96 - 181	124 (3)	
Chlorophyll- uncorrected (μ g/L)	1 - 1	1 (3)	
Secchi (ft)	18.4 - 20.8	19.4 (3)	
Secchi (m)	5.6 - 6.3	5.9 (3)	
Color (Pt-Co Units)	5 - 5	5 (1)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Green Pond
GNIS Number	283399
Latitude	29.5540
Longitude	-82.0344
Water Body Type	Lake
Surface Area (ha and acre)	13 ha or 32 acre
Period of Record (year)	1997 to 2006
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	6 (5 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	124 (96 to 181)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Hardesty in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

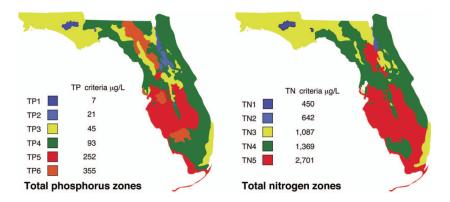
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	14 - 17	15 (2)	
Total Nitrogen (µg/L)	485 - 591	535 (2)	
Chlorophyll- uncorrected (µg/L)	6 - 7	6 (2)	
Secchi (ft)	4.6 - 5.1	4.9 (2)	
Secchi (m)	1.4 - 1.6	1.5 (2)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Hardesty
GNIS Number	305787
Latitude	29.6034
Longitude	-81.8547
Water Body Type	Lake
Surface Area (ha and acre)	18 ha or 44 acre
Period of Record (year)	1990 to 1991
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	15 (14 to 17)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	535 (485 to 591)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Hewitt in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

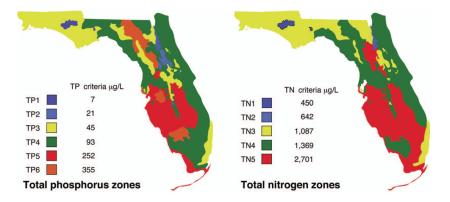
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	6 - 8	7 (2)	
Total Nitrogen (µg/L)	146 - 178	161 (2)	
Chlorophyll- uncorrected (µg/L)	3 - 5	4 (2)	
Secchi (ft)	7.9 - 8.1	8.0 (2)	
Secchi (m)	2.4 - 2.5	2.4 (2)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Hewitt
GNIS Number	305802
Latitude	29.5411
Longitude	-81.9277
Water Body Type	Lake
Surface Area (ha and acre)	39 ha or 97 acre
Period of Record (year)	1990 to 1991
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	7 (6 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	161 (146 to 178)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Higgenbotham in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

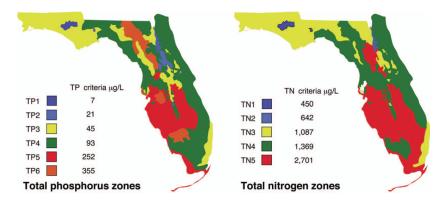
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

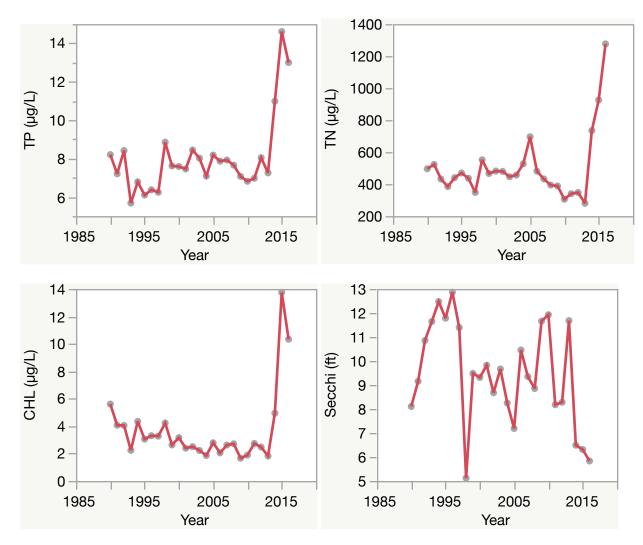

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	6 - 15	8 (27)
Total Nitrogen (µg/L)	280 - 1277	473 (27)
Chlorophyll- uncorrected (µg/L)	2 - 14	3 (27)
Secchi (ft)	5.1 - 12.9	9.2 (27)
Secchi (m)	1.6 - 3.9	2.8 (27)
Color (Pt-Co Units)	3 - 36	9 (16)
Specific Conductance (µS/cm@25 C)	57 - 76	67 (10)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Higgenbotham
GNIS Number	305807
Latitude	29.5611
Longitude	-81.9704
Water Body Type	Lake
Surface Area (ha and acre)	22 ha or 55 acre
Period of Record (year)	1990 to 2016
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	8 (6 to 15)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	473 (280 to 1277)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Higgenbotham trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.29$, p = 0.00), total nitrogen (TN No Trend, $R^2 = 0.11$, p = 0.09), chlorophyll (CHL No Trend, $R^2 = 0.06$, p = 0.22) and Secchi depth (Secchi Decreasing, $R^2 = 0.15$, p = 0.05).

Florida LAKEWATCH Report for Ida in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

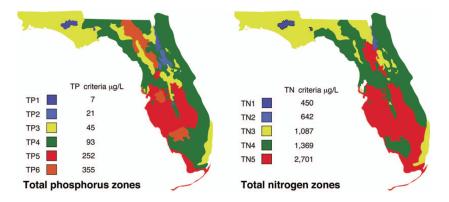
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

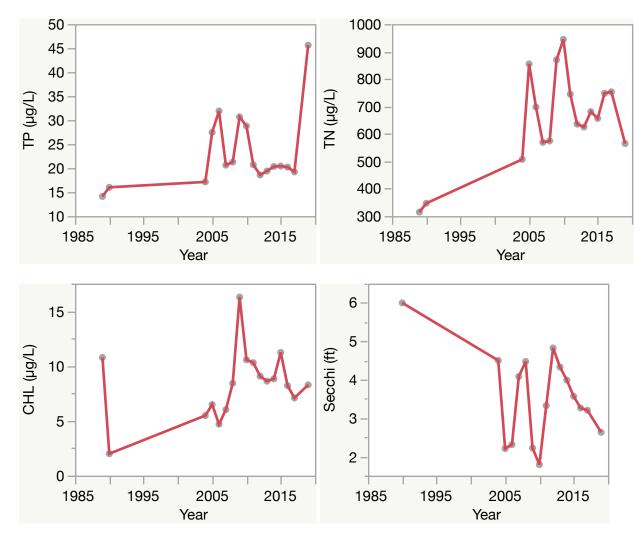

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	14 - 46	22 (17)	
Total Nitrogen (µg/L)	315 - 944	628 (17)	
Chlorophyll- uncorrected (µg/L)	2 - 16	8 (17)	
Secchi (ft)	1.8 - 6.0	3.4 (16)	
Secchi (m)	0.5 - 1.8	1.0 (16)	
Color (Pt-Co Units)	39 - 179	95 (15)	
Specific Conductance (µS/cm@25 C)	40 - 71	59 (12)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Ida
GNIS Number	284462
Latitude	29.6288
Longitude	-81.8546
Water Body Type	Lake
Surface Area (ha and acre)	49 ha or 122 acre
Period of Record (year)	1989 to 2019
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	22 (14 to 46)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	628 (315 to 944)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Ida trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.17$, p = 0.10), total nitrogen (TN Increasing, $R^2 = 0.37$, p = 0.01), chlorophyll (CHL No Trend, $R^2 = 0.09$, p = 0.24) and Secchi depth (Secchi No Trend, $R^2 = 0.19$, p = 0.10).

Florida LAKEWATCH Report for Jewel in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

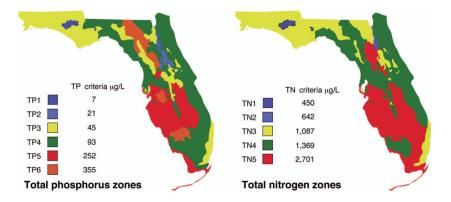
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric in	terpretation
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	8 - 8	8 (1)	
Total Nitrogen (µg/L)	269 - 269	269 (1)	
Chlorophyll- uncorrected (µg/L)	2 - 2	2 (1)	
Secchi (ft)	18.3 - 18.3	18.3 (1)	
Secchi (m)	5.6 - 5.6	5.6 (1)	
Color (Pt-Co Units)	7 - 7	7 (1)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Jewel
GNIS Number	284786
Latitude	29.6450
Longitude	-81.8671
Water Body Type	Lake
Surface Area (ha and acre)	27.9 ha or 67 acre
Period of Record (year)	2006 to 2006
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	8 (8 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	269 (269 to 269)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Johntry Pond in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

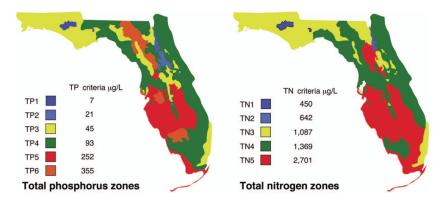
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric in	terpretation
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	5 - 5	5 (1)
Total Nitrogen (µg/L)	423 - 423	423 (1)
Chlorophyll- uncorrected (µg/L)	2 - 2	2 (1)
Secchi (ft)	6.9 - 6.9	6.9 (1)
Secchi (m)	2.1 - 2.1	2.1 (1)
Color (Pt-Co Units)	15 - 15	15 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Johntry Pond
GNIS Number	
Latitude	29.5707
Longitude	-81.9583
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2006 to 2006
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	5 (5 to 5)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	423 (423 to 423)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Junior in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

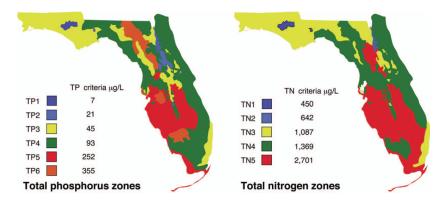
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	6 - 8	7 (2)	
Total Nitrogen (µg/L)	214 - 226	220 (2)	
Chlorophyll- uncorrected (µg/L)	2 - 4	2 (2)	
Secchi (ft)	13.8 - 15.4	14.6 (2)	
Secchi (m)	4.2 - 4.7	4.5 (2)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Junior
GNIS Number	284983
Latitude	29.6553
Longitude	-81.8817
Water Body Type	Lake
Surface Area (ha and acre)	30 ha or 74 acre
Period of Record (year)	1998 to 1999
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	7 (6 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	220 (214 to 226)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Lagonda in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

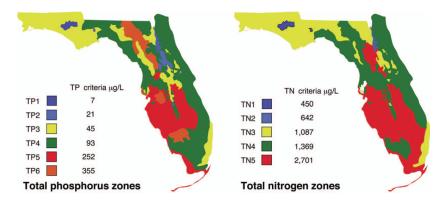
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

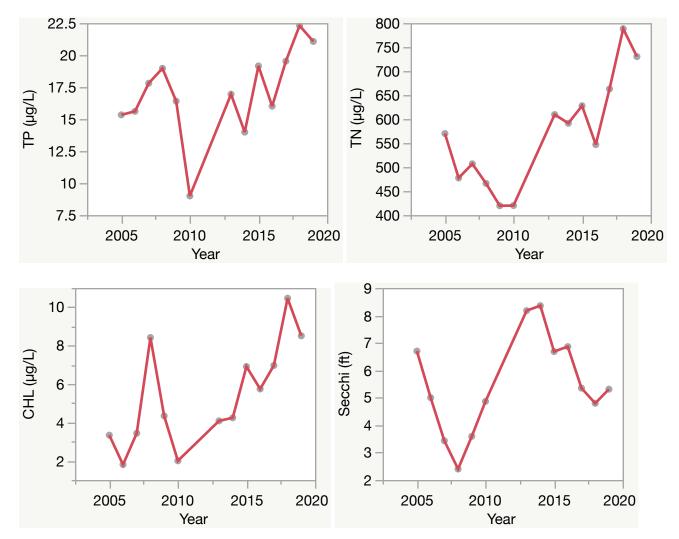

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 22	17 (13)
Total Nitrogen (µg/L)	420 - 788	560 (13)
Chlorophyll- uncorrected (μ g/L)	2 - 10	5 (13)
Secchi (ft)	2.4 - 8.4	5.2 (13)
Secchi (m)	0.7 - 2.5	1.6 (13)
Color (Pt-Co Units)	3 - 179	15 (13)
Specific Conductance (µS/cm@25 C)	70 - 89	77 (11)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Lagonda
GNIS Number	305916
Latitude	29.6211
Longitude	-81.8920
Water Body Type	Lake
Surface Area (ha and acre)	21 ha or 52 acre
Period of Record (year)	2005 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	17 (9 to 22)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	560 (420 to 788)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Lagonda trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.23$, p = 0.09), total nitrogen (TN Increasing, $R^2 = 0.60$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.47$, p = 0.01) and Secchi depth (Secchi No Trend, $R^2 = 0.12$, p = 0.25).

Florida LAKEWATCH Report for Little Clearwater 2 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

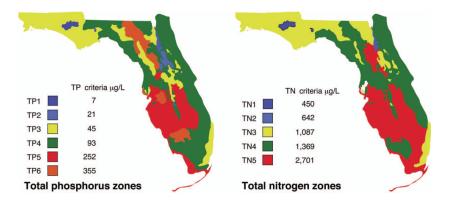
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 10	10 (2)
Total Nitrogen (µg/L)	282 - 285	283 (2)
Chlorophyll- uncorrected (µg/L)	3 - 6	4 (2)
Secchi (ft)	7.0 - 7.5	7.2 (2)
Secchi (m)	2.1 - 2.3	2.2 (2)
Color (Pt-Co Units)	3 - 4	4 (2)
Specific Conductance (µS/cm@25 C)	60 - 60	60 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Little Clearwater 2
GNIS Number	
Latitude	29.5764
Longitude	-81.9576
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2006 to 2007
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	10 (9 to 10)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	283 (282 to 285)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Little McMeekin in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

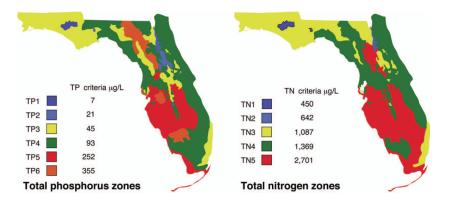
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	16 - 16	16 (1)	
Total Nitrogen (µg/L)	694 - 694	694 (1)	
Chlorophyll- uncorrected (µg/L)	5 - 5	5 (1)	
Secchi (ft)	5.3 - 5.3	5.3 (1)	
Secchi (m)	1.6 - 1.6	1.6 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Little McMeekin
GNIS Number	307092
Latitude	29.5924
Longitude	-82.0176
Water Body Type	Lake
Surface Area (ha and acre)	10 ha or 26 acre
Period of Record (year)	2000 to 2000
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	16 (16 to 16)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	694 (694 to 694)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Little Swan in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

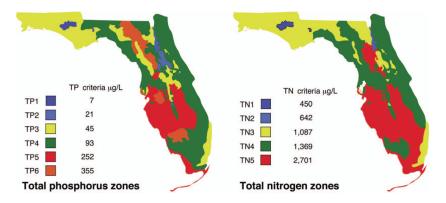
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum Grand Geometri	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 9	9 (1)
Total Nitrogen (µg/L)	403 - 403	403 (1)
Chlorophyll- uncorrected (μ g/L)	5 - 6	5 (2)
Secchi (ft)	4.5 - 6.6	5.5 (2)
Secchi (m)	1.4 - 2.0	1.7 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Little Swan
GNIS Number	
Latitude	29.7369
Longitude	-82.0004
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2010 to 2011
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	9 (9 to 9)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	403 (403 to 403)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Long Pond in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

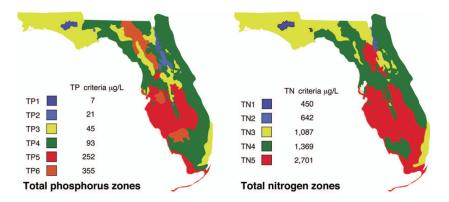
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

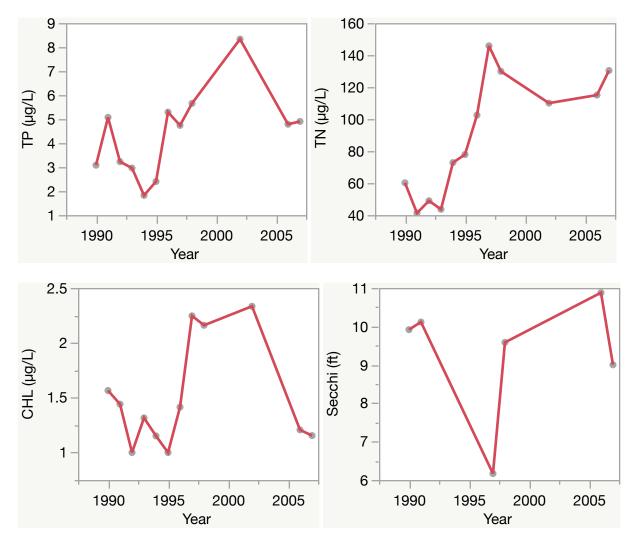

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	2 - 8	4 (12)
Total Nitrogen (µg/L)	41 - 146	82 (12)
Chlorophyll- uncorrected (µg/L)	1 - 2	1 (12)
Secchi (ft)	6.2 - 10.9	9.1 (6)
Secchi (m)	1.9 - 3.3	2.8 (6)
Color (Pt-Co Units)	1 - 2	2 (2)
Specific Conductance (µS/cm@25 C)	52 - 52	52 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Long Pond
GNIS Number	277647
Latitude	29.6734
Longitude	-81.9957
Water Body Type	Lake
Surface Area (ha and acre)	14 ha or 35 acre
Period of Record (year)	1990 to 2007
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	4 (2 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	82 (41 to 146)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Long Pond trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.27$, p = 0.08), total nitrogen (TN Increasing, $R^2 = 0.57$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.02$, p = 0.68) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.94).

Florida LAKEWATCH Report for Mariner in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	2 - 2	2 (1)	
Total Nitrogen (µg/L)	120 - 120	120 (1)	
Chlorophyll- uncorrected (µg/L)	3 - 3	3 (1)	
Secchi (ft)	15.0 - 15.0	15.0 (1)	
Secchi (m)	4.6 - 4.6	4.6 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Mariner
GNIS Number	286430
Latitude	29.6473
Longitude	-81.8902
Water Body Type	Lake
Surface Area (ha and acre)	55 ha or 137 acre
Period of Record (year)	1988 to 1988
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	2 (2 to 2)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	120 (120 to 120)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Mason in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

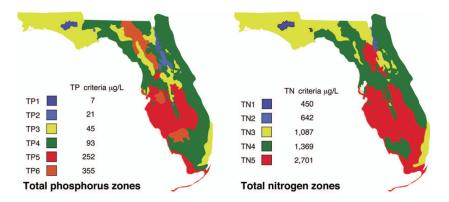
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	5 - 5	5 (1)	
Total Nitrogen (µg/L)	115 - 115	115 (1)	
Chlorophyll- uncorrected (µg/L)	6 - 6	6 (1)	
Secchi (ft)	9.8 - 9.8	9.8 (1)	
Secchi (m)	3.0 - 3.0	3.0 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Mason
GNIS Number	286505
Latitude	29.6633
Longitude	-81.9844
Water Body Type	Lake
Surface Area (ha and acre)	33 ha or 82 acre
Period of Record (year)	1990 to 1990
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	5 (5 to 5)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	115 (115 to 115)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for McCloud in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

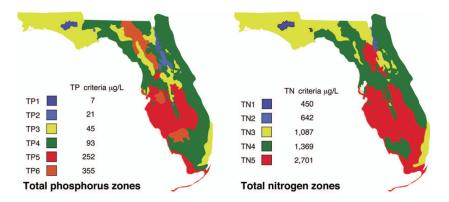
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

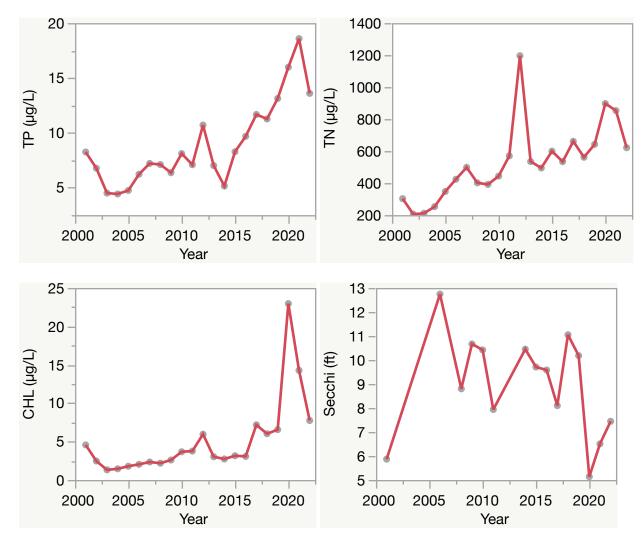

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	4 - 19	8 (22)	
Total Nitrogen (µg/L)	206 - 1196	483 (22)	
Chlorophyll- uncorrected (μ g/L)	1 - 23	4 (22)	
Secchi (ft)	5.1 - 12.7	8.7 (15)	
Secchi (m)	1.6 - 3.9	2.7 (15)	
Color (Pt-Co Units)	2 - 20	9 (22)	
Specific Conductance (µS/cm@25 C)	24 - 55	34 (16)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	McCloud
GNIS Number	
Latitude	29.6946
Longitude	-81.9969
Water Body Type	Lake
Surface Area (ha and acre)	6.4 ha or 16 acre
Period of Record (year)	2001 to 2022
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	8 (4 to 19)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	483 (206 to 1196)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake McCloud trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.64$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.50$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.40$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.05$, p = 0.44).

Florida LAKEWATCH Report for McMeekin in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

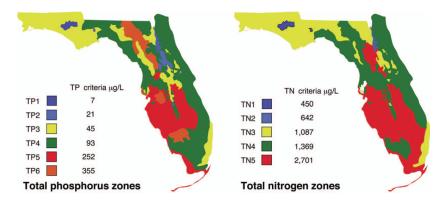
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric in	terpretation
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

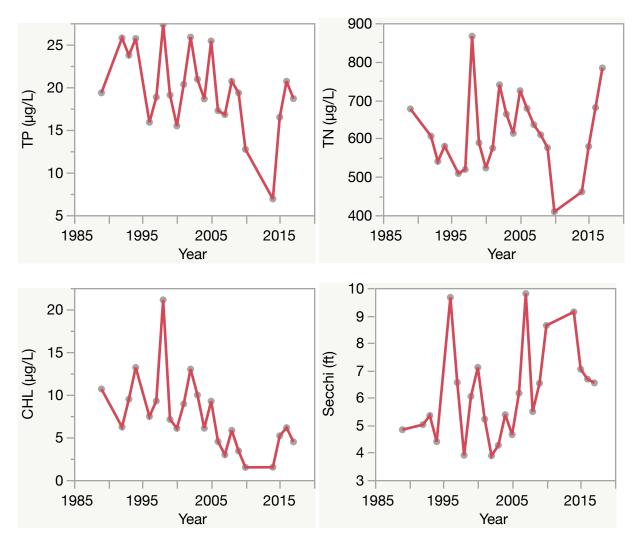

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	7 - 27	19 (23)
Total Nitrogen (µg/L)	409 - 866	606 (23)
Chlorophyll- uncorrected (µg/L)	1 - 21	6 (23)
Secchi (ft)	3.9 - 9.8	6.0 (23)
Secchi (m)	1.2 - 3.0	1.8 (23)
Color (Pt-Co Units)	7 - 37	16 (14)
Specific Conductance (µS/cm@25 C)	86 - 98	91 (8)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	McMeekin
GNIS Number	286642
Latitude	29.5918
Longitude	-82.0120
Water Body Type	Lake
Surface Area (ha and acre)	83 ha or 205 acre
Period of Record (year)	1989 to 2017
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	19 (7 to 27)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	606 (409 to 866)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake McMeekin trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.22$, p = 0.02), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.89), chlorophyll (CHL Decreasing, $R^2 = 0.32$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.16$, p = 0.06).

Florida LAKEWATCH Report for Morris in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric in	terpretation
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

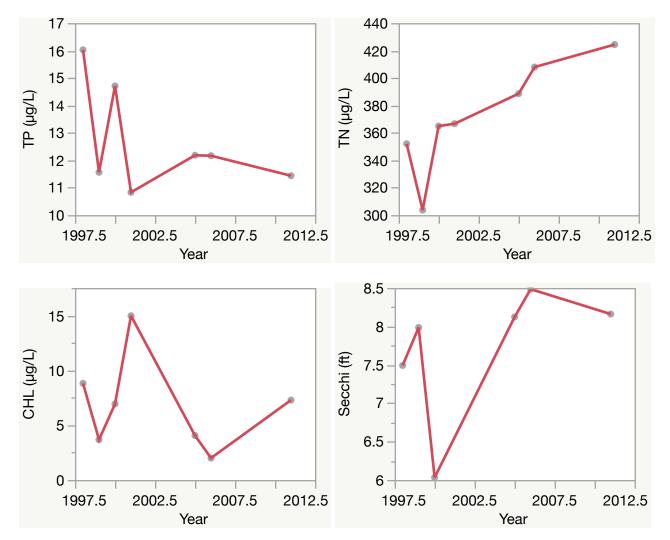

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	11 - 16	13 (7)
Total Nitrogen (µg/L)	304 - 424	371 (7)
Chlorophyll- uncorrected (µg/L)	2 - 15	6 (7)
Secchi (ft)	6.0 - 8.5	7.7 (6)
Secchi (m)	1.8 - 2.6	2.3 (6)
Color (Pt-Co Units)	6 - 16	10 (4)
Specific Conductance (µS/cm@25 C)	51 - 51	51 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Morris
GNIS Number	306062
Latitude	29.6143
Longitude	-81.9757
Water Body Type	Lake
Surface Area (ha and acre)	27 ha or 67 acre
Period of Record (year)	1998 to 2011
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	13 (11 to 16)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	371 (304 to 424)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Morris trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.26$, p = 0.25), total nitrogen (TN Increasing, $R^2 = 0.75$, p = 0.01), chlorophyll (CHL No Trend, $R^2 = 0.06$, p = 0.59) and Secchi depth (Secchi No Trend, $R^2 = 0.28$, p = 0.28).

Florida LAKEWATCH Report for Mud in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric in	terpretation
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	14 - 28	20 (3)
Total Nitrogen (µg/L)	866 - 1463	1078 (3)
Chlorophyll- uncorrected (μ g/L)	4 - 8	5 (3)
Secchi (ft)	2.9 - 6.1	4.1 (3)
Secchi (m)	0.9 - 1.9	1.2 (3)
Color (Pt-Co Units)	100 - 137	117 (2)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Mud
GNIS Number	287413
Latitude	29.6156
Longitude	-81.7055
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2004 to 2006
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (14 to 28)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1078 (866 to 1463)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for North Estella in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

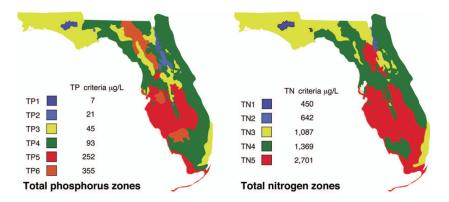
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

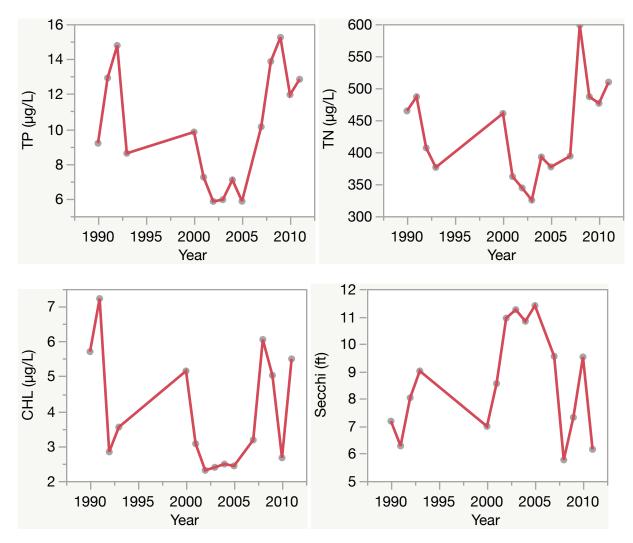

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	6 - 15	10 (15)
Total Nitrogen (µg/L)	325 - 599	425 (15)
Chlorophyll- uncorrected (µg/L)	2 - 7	4 (15)
Secchi (ft)	5.8 - 11.4	8.4 (15)
Secchi (m)	1.8 - 3.5	2.6 (15)
Color (Pt-Co Units)	10 - 21	14 (10)
Specific Conductance (µS/cm@25 C)	69 - 113	90 (5)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	North Estella
GNIS Number	
Latitude	29.4297
Longitude	-81.6051
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 2011
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	10 (6 to 15)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	425 (325 to 599)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake North Estella trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.79), total nitrogen (TN No Trend, $R^2 = 0.05$, p = 0.42), chlorophyll (CHL No Trend, $R^2 = 0.04$, p = 0.47) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.62).

Florida LAKEWATCH Report for North Twin in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

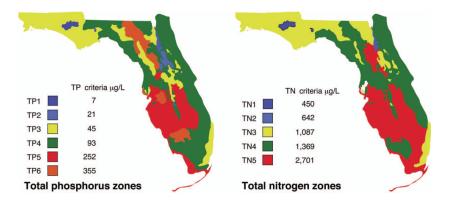
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

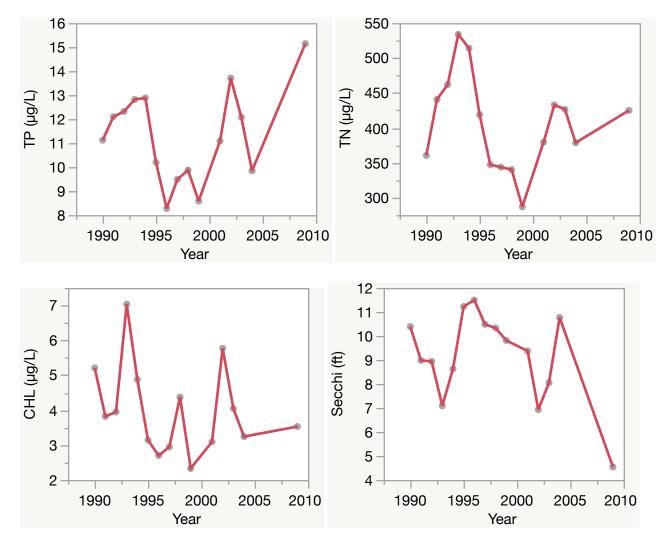

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	8 - 15	11 (15)
Total Nitrogen (µg/L)	287 - 534	401 (15)
Chlorophyll- uncorrected (μ g/L)	2 - 7	4 (15)
Secchi (ft)	4.5 - 11.5	8.9 (15)
Secchi (m)	1.4 - 3.5	2.7 (15)
Color (Pt-Co Units)	7 - 10	8 (5)
Specific Conductance (µS/cm@25 C)	40 - 40	40 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	North Twin
GNIS Number	287873
Latitude	29.6084
Longitude	-82.0160
Water Body Type	Lake
Surface Area (ha and acre)	4 ha or 9 acre
Period of Record (year)	1990 to 2009
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	11 (8 to 15)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	401 (287 to 534)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake North Twin trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.04$, p = 0.46), total nitrogen (TN No Trend, $R^2 = 0.05$, p = 0.44), chlorophyll (CHL No Trend, $R^2 = 0.08$, p = 0.31) and Secchi depth (Secchi No Trend, $R^2 = 0.19$, p = 0.11).

Florida LAKEWATCH Report for Omega in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	18 - 23	21 (3)
Total Nitrogen (µg/L)	989 - 1417	1165 (3)
Chlorophyll- uncorrected (µg/L)	6 - 24	14 (3)
Secchi (ft)	2.9 - 5.4	3.7 (3)
Secchi (m)	0.9 - 1.7	1.1 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Omega
GNIS Number	295031
Latitude	29.4479
Longitude	-81.5323
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 1992
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	21 (18 to 23)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1165 (989 to 1417)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Punchbowl in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

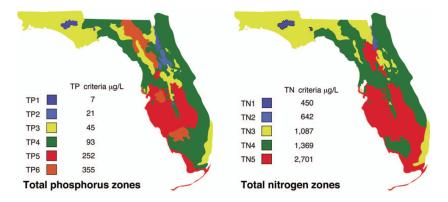
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

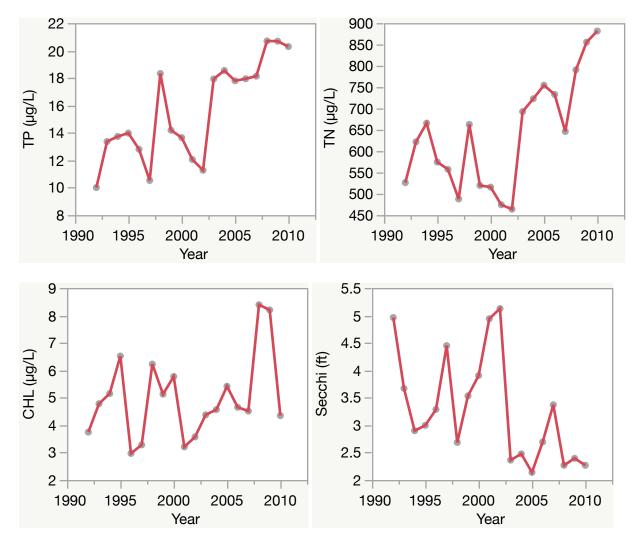

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	10 - 21	15 (19)	
Total Nitrogen (µg/L)	464 - 882	627 (19)	
Chlorophyll- uncorrected (µg/L)	3 - 8	5 (19)	
Secchi (ft)	2.1 - 5.1	3.2 (19)	
Secchi (m)	0.7 - 1.6	1.0 (19)	
Color (Pt-Co Units)	39 - 145	95 (10)	
Specific Conductance (µS/cm@25 C)	53 - 58	55 (3)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Punchbowl
GNIS Number	
Latitude	29.7170
Longitude	-82.0481
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1992 to 2010
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	15 (10 to 21)
TN Zone	TN3
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	627 (464 to 882)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Punchbowl trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.63$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.46$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.11$, p = 0.16) and Secchi depth (Secchi Decreasing, $R^2 = 0.26$, p = 0.03).

Florida LAKEWATCH Report for Redwater in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

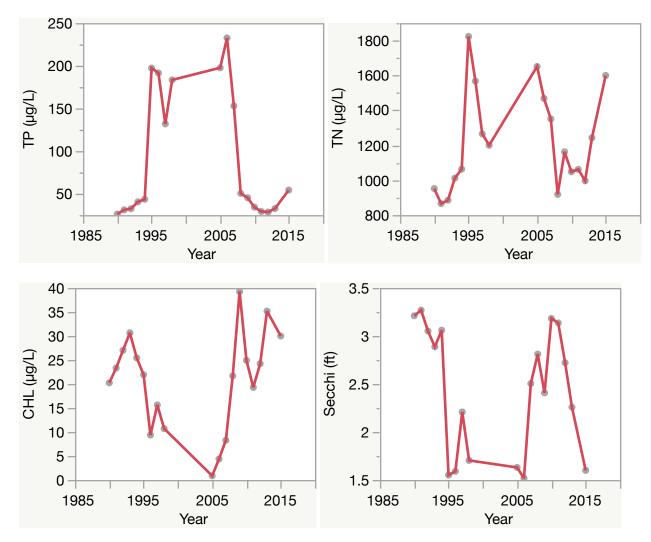

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	26 - 233	66 (19)	
Total Nitrogen (µg/L)	866 - 1824	1188 (19)	
Chlorophyll- uncorrected (µg/L)	1 - 39	16 (19)	
Secchi (ft)	1.5 - 3.3	2.3 (19)	
Secchi (m)	0.5 - 1.0	0.7 (19)	
Color (Pt-Co Units)	33 - 422	88 (8)	
Specific Conductance (µS/cm@25 C)	59 - 81	69 (6)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Redwater
GNIS Number	289587
Latitude	29.5614
Longitude	-82.0218
Water Body Type	Lake
Surface Area (ha and acre)	115 ha or 284.2 acre
Period of Record (year)	1990 to 2015
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	66 (26 to 233)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1188 (866 to 1824)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Redwater trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.68), total nitrogen (TN No Trend, $R^2 = 0.03$, p = 0.45), chlorophyll (CHL No Trend, $R^2 = 0.02$, p = 0.61) and Secchi depth (Secchi No Trend, $R^2 = 0.04$, p = 0.42).

Florida LAKEWATCH Report for Riley in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

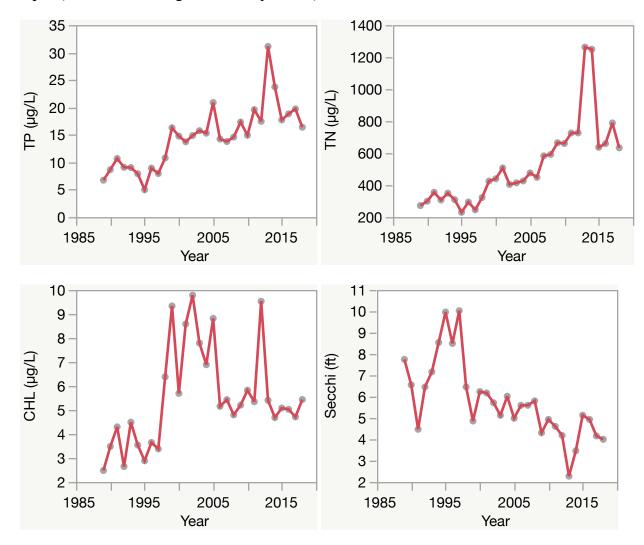

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	5 - 31	13 (30)	
Total Nitrogen (µg/L)	230 - 1262	475 (30)	
Chlorophyll- uncorrected (µg/L)	2 - 10	5 (30)	
Secchi (ft)	2.3 - 10.0	5.5 (30)	
Secchi (m)	0.7 - 3.1	1.7 (30)	
Color (Pt-Co Units)	21 - 190	47 (17)	
Specific Conductance (µS/cm@25 C)	76 - 106	87 (11)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Riley
GNIS Number	289703
Latitude	29.5218
Longitude	-82.0321
Water Body Type	Lake
Surface Area (ha and acre)	19 ha or 47 acre
Period of Record (year)	1989 to 2018
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	13 (5 to 31)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	475 (230 to 1262)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Riley trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.63$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.61$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.10$, p = 0.09) and Secchi depth (Secchi Decreasing, $R^2 = 0.48$, p = 0.00).

Florida LAKEWATCH Report for Rocky in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

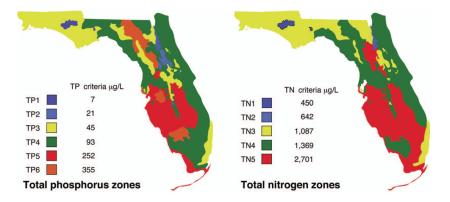
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	16 - 21	17 (4)
Total Nitrogen (µg/L)	477 - 598	544 (4)
Chlorophyll- uncorrected (µg/L)	6 - 9	8 (4)
Secchi (ft)	6.0 - 8.0	7.1 (4)
Secchi (m)	1.8 - 2.4	2.2 (4)
Color (Pt-Co Units)	10 - 28	15 (3)
Specific Conductance (µS/cm@25 C)	36 - 66	49 (2)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rocky
GNIS Number	1988422
Latitude	29.6430
Longitude	-81.8746
Water Body Type	Lake
Surface Area (ha and acre)	7.9 ha or 19 acre
Period of Record (year)	2006 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	17 (16 to 21)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	544 (477 to 598)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Rodman-1 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

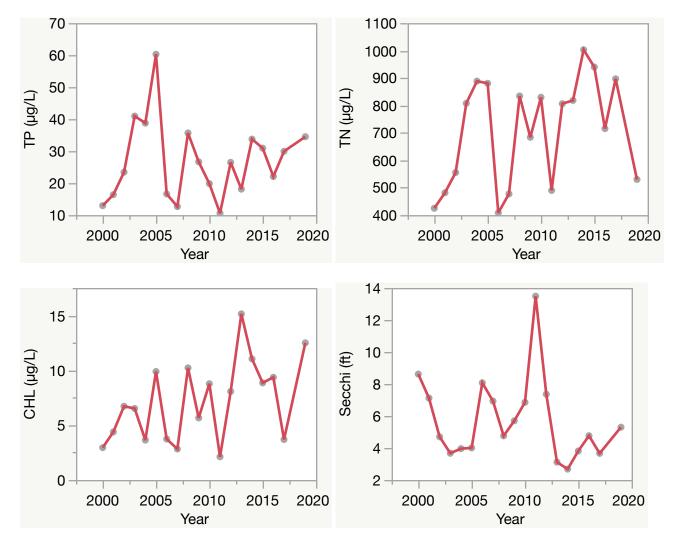

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	11 - 60	24 (19)	
Total Nitrogen (µg/L)	409 - 1003	682 (19)	
Chlorophyll- uncorrected (µg/L)	2 - 15	6 (19)	
Secchi (ft)	2.7 - 13.5	5.3 (19)	
Secchi (m)	0.8 - 4.1	1.6 (19)	
Color (Pt-Co Units)	11 - 113	42 (18)	
Specific Conductance (µS/cm@25 C)	259 - 439	354 (12)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-1
GNIS Number	306146
Latitude	29.5232
Longitude	-81.8240
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2000 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	24 (11 to 60)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	682 (409 to 1003)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-1 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.00$, p = 0.86), total nitrogen (TN No Trend, $R^2 = 0.14$, p = 0.11), chlorophyll (CHL Increasing, $R^2 = 0.24$, p = 0.03) and Secchi depth (Secchi No Trend, $R^2 = 0.04$, p = 0.41).

Florida LAKEWATCH Report for Rodman-2 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

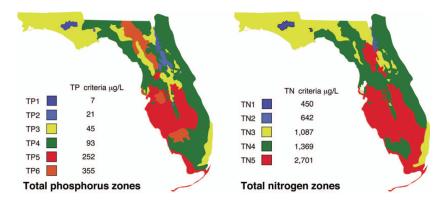
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

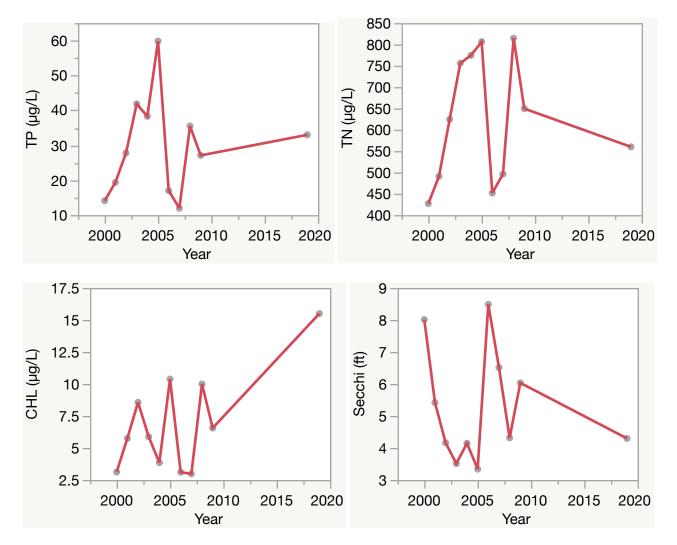

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	12 - 60	27 (11)	
Total Nitrogen (µg/L)	427 - 815	607 (11)	
Chlorophyll- uncorrected (μ g/L)	3 - 16	6 (11)	
Secchi (ft)	3.3 - 8.5	5.1 (11)	
Secchi (m)	1.0 - 2.6	1.5 (11)	
Color (Pt-Co Units)	19 - 115	49 (8)	
Specific Conductance (µS/cm@25 C)	227 - 474	335 (4)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-2
GNIS Number	306146
Latitude	29.5425
Longitude	-81.8373
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2000 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	27 (12 to 60)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	607 (427 to 815)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-2 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.02$, p = 0.70), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.86), chlorophyll (CHL Increasing, $R^2 = 0.47$, p = 0.02) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.65).

Florida LAKEWATCH Report for Rodman-3 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

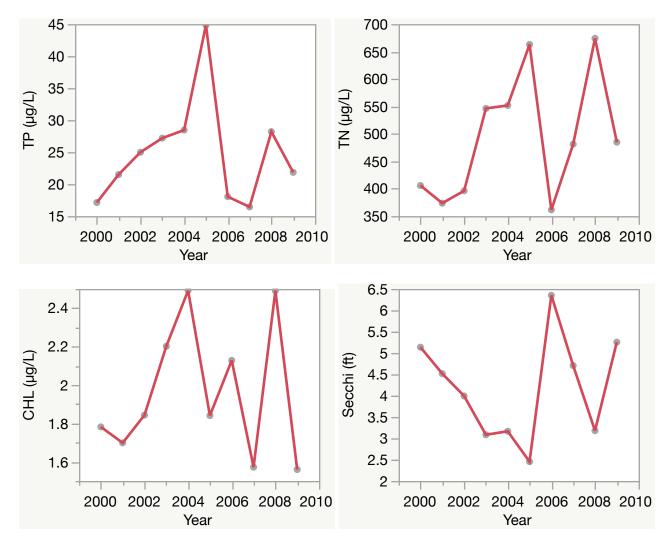

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	16 - 45	24 (10)	
Total Nitrogen (µg/L)	361 - 674	482 (10)	
Chlorophyll- uncorrected (μ g/L)	2 - 2	2 (10)	
Secchi (ft)	2.5 - 6.4	4.0 (10)	
Secchi (m)	0.7 - 1.9	1.2 (10)	
Color (Pt-Co Units)	39 - 154	65 (7)	
Specific Conductance (µS/cm@25 C)	110 - 140	129 (3)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-3
GNIS Number	306146
Latitude	29.5075
Longitude	-81.8858
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2000 to 2009
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	24 (16 to 45)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	482 (361 to 674)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-3 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.83), total nitrogen (TN No Trend, $R^2 = 0.20$, p = 0.19), chlorophyll (CHL No Trend, $R^2 = 0.00$, p = 0.85) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.86).

Florida LAKEWATCH Report for Rodman-4 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

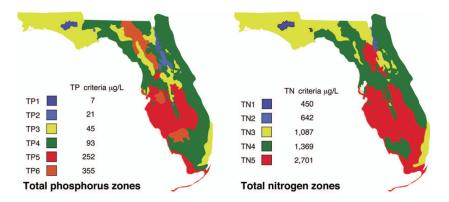
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

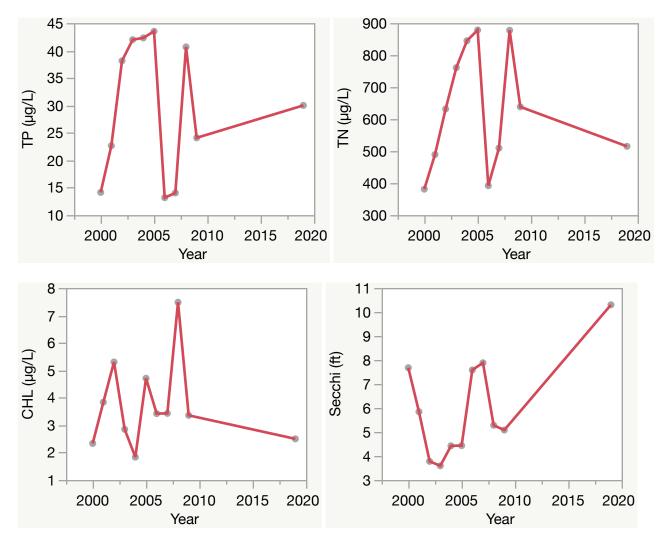

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	13 - 44	27 (11)
Total Nitrogen (µg/L)	381 - 878	603 (11)
Chlorophyll- uncorrected (µg/L)	2 - 7	3 (11)
Secchi (ft)	3.6 - 10.3	5.7 (11)
Secchi (m)	1.1 - 3.1	1.7 (11)
Color (Pt-Co Units)	16 - 107	40 (8)
Specific Conductance (µS/cm@25 C)	333 - 459	409 (4)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-4
GNIS Number	306146
Latitude	29.4860
Longitude	-81.9077
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2000 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	27 (13 to 44)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	603 (381 to 878)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-4 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.00$, p = 0.96), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.99), chlorophyll (CHL No Trend, $R^2 = 0.00$, p = 0.92) and Secchi depth (Secchi No Trend, $R^2 = 0.35$, p = 0.06).

Florida LAKEWATCH Report for Rodman-4A in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

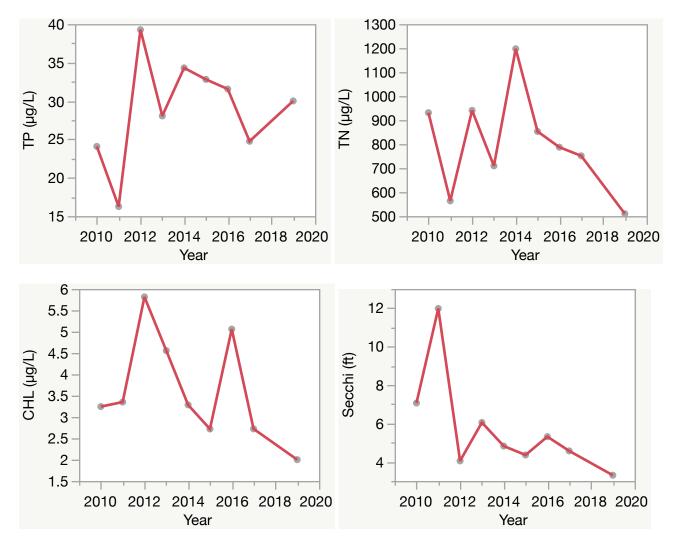

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	16 - 39	28 (9)
Total Nitrogen (µg/L)	510 - 1197	781 (9)
Chlorophyll- uncorrected (µg/L)	2 - 6	3 (9)
Secchi (ft)	3.3 - 12.0	5.3 (9)
Secchi (m)	1.0 - 3.7	1.6 (9)
Color (Pt-Co Units)	16 - 85	37 (9)
Specific Conductance (µS/cm@25 C)	338 - 448	392 (9)
Lake Classification	Clear Hardwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-4A
GNIS Number	306146
Latitude	29.5094
Longitude	-81.9068
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2010 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	28 (16 to 39)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	781 (510 to 1197)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-4A trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.06$, p = 0.52), total nitrogen (TN No Trend, $R^2 = 0.10$, p = 0.40), chlorophyll (CHL No Trend, $R^2 = 0.17$, p = 0.28) and Secchi depth (Secchi No Trend, $R^2 = 0.41$, p = 0.06).

Florida LAKEWATCH Report for Rodman-5 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

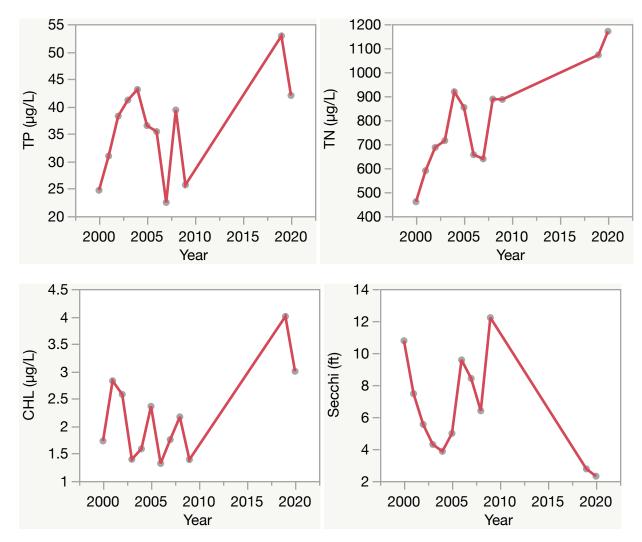

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	22 - 53	35 (12)
Total Nitrogen (µg/L)	460 - 1170	769 (12)
Chlorophyll- uncorrected (µg/L)	1 - 4	2 (12)
Secchi (ft)	2.3 - 12.2	5.8 (12)
Secchi (m)	0.7 - 3.7	1.8 (12)
Color (Pt-Co Units)	13 - 104	32 (7)
Specific Conductance (µS/cm@25 C)	358 - 521	410 (3)
Lake Classification	Clear Hardwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-5
GNIS Number	306146
Latitude	29.3855
Longitude	-81.9001
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2000 to 2020
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	35 (22 to 53)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	769 (460 to 1170)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-5 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.26$, p = 0.09), total nitrogen (TN Increasing, $R^2 = 0.73$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.34$, p = 0.05) and Secchi depth (Secchi No Trend, $R^2 = 0.20$, p = 0.14).

Florida LAKEWATCH Report for Rodman-6 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

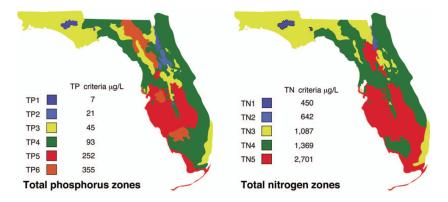
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

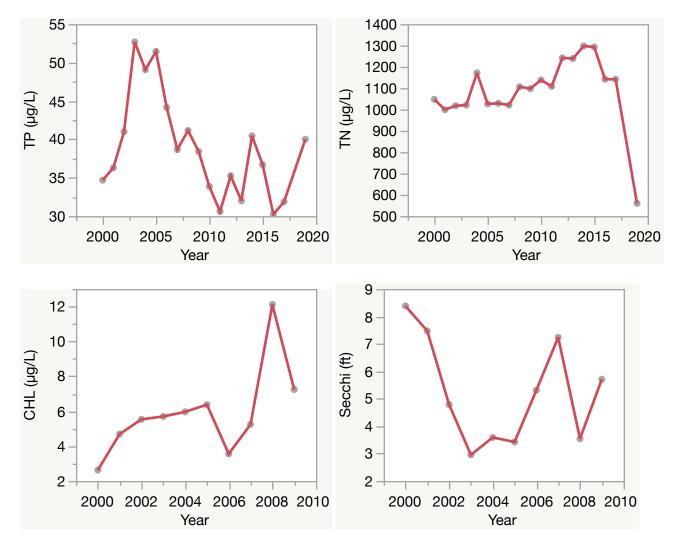

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	30 - 53	38 (19)
Total Nitrogen (µg/L)	560 - 1297	1075 (19)
Chlorophyll- uncorrected (µg/L)	2 - 8	4 (19)
Secchi (ft)	3.4 - 7.5	5.0 (19)
Secchi (m)	1.0 - 2.3	1.5 (19)
Color (Pt-Co Units)	7 - 95	25 (16)
Specific Conductance (µS/cm@25 C)	302 - 374	344 (12)
Lake Classification	Clear Hardwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-6
GNIS Number	306146
Latitude	29.5077
Longitude	-81.8045
Water Body Type	Lake
Surface Area (ha and acre)	5261 ha or 13000 acre
Period of Record (year)	2000 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	38 (30 to 53)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1075 (560 to 1297)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-6 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.23$, p = 0.04), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.79), chlorophyll (CHL No Trend, $R^2 = 0.00$, p = 0.80) and Secchi depth (Secchi No Trend, $R^2 = 0.01$, p = 0.74).

Florida LAKEWATCH Report for Rodman-out 1 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

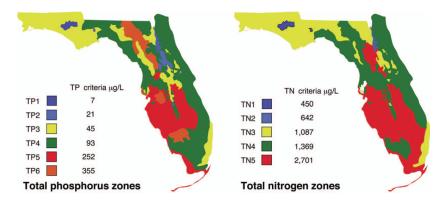
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

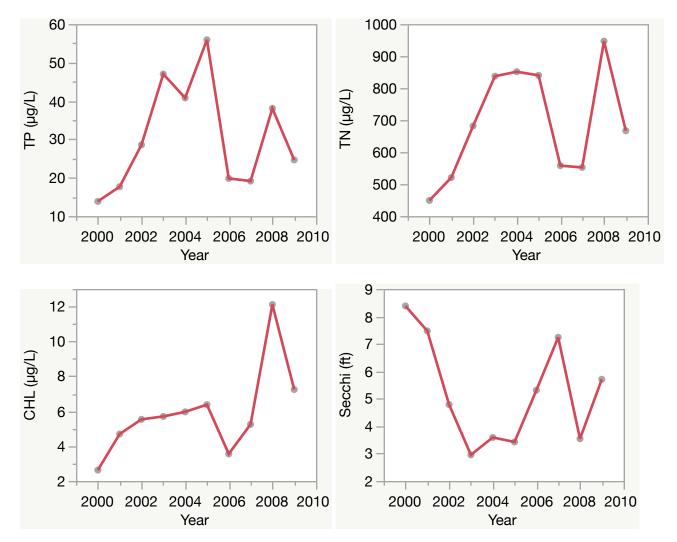

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	14 - 56	28 (10)
Total Nitrogen (µg/L)	449 - 947	671 (10)
Chlorophyll- uncorrected (µg/L)	3 - 12	5 (10)
Secchi (ft)	3.0 - 8.4	4.9 (10)
Secchi (m)	0.9 - 2.6	1.5 (10)
Color (Pt-Co Units)	14 - 92	30 (6)
Specific Conductance (µS/cm@25 C)	274 - 514	372 (3)
Lake Classification	Clear Hardwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-out 1
GNIS Number	306146
Latitude	29.5257
Longitude	-81.7970
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2000 to 2009
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	28 (14 to 56)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	671 (449 to 947)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-out 1 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.03$, p = 0.65), total nitrogen (TN No Trend, $R^2 = 0.14$, p = 0.29), chlorophyll (CHL No Trend, $R^2 = 0.38$, p = 0.06) and Secchi depth (Secchi No Trend, $R^2 = 0.10$, p = 0.39).

Florida LAKEWATCH Report for Rodman-out 2 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

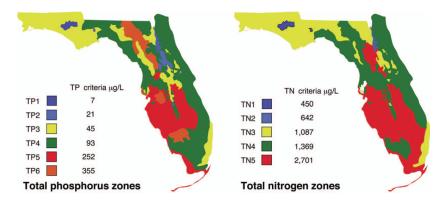
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

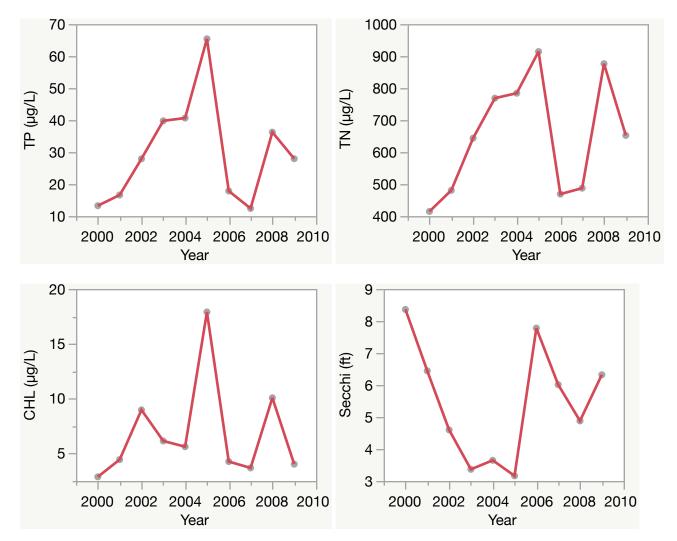

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	12 - 65	26 (10)
Total Nitrogen (µg/L)	415 - 914	626 (10)
Chlorophyll- uncorrected (µg/L)	3 - 18	6 (10)
Secchi (ft)	3.2 - 8.4	5.2 (10)
Secchi (m)	1.0 - 2.5	1.6 (10)
Color (Pt-Co Units)	22 - 125	50 (6)
Specific Conductance (µS/cm@25 C)	153 - 476	285 (3)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-out 2
GNIS Number	306164
Latitude	29.5083
Longitude	-81.9160
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2000 to 2009
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	26 (12 to 65)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	626 (415 to 914)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-out 2 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.03$, p = 0.64), total nitrogen (TN No Trend, $R^2 = 0.12$, p = 0.34), chlorophyll (CHL No Trend, $R^2 = 0.01$, p = 0.74) and Secchi depth (Secchi No Trend, $R^2 = 0.01$, p = 0.79).

Florida LAKEWATCH Report for Rodman-out 3 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

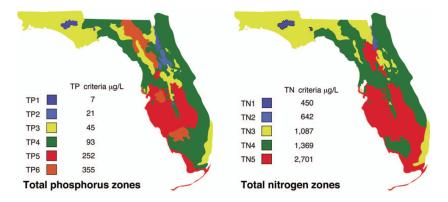
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

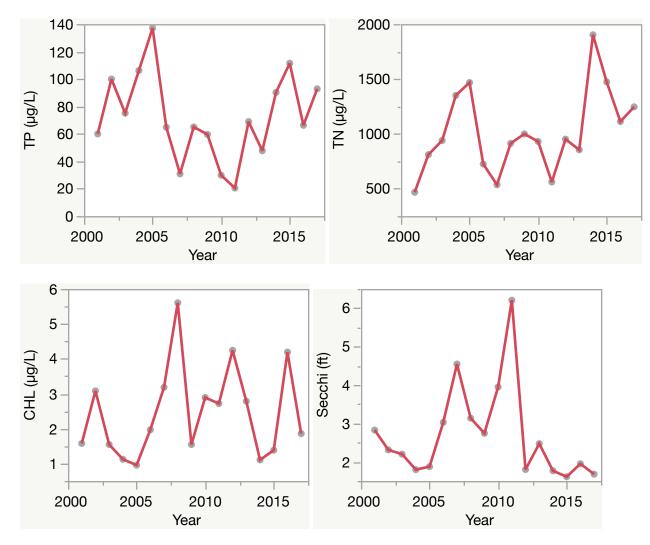

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	20 - 137	65 (17)	
Total Nitrogen (µg/L)	467 - 1902	949 (17)	
Chlorophyll- uncorrected (µg/L)	1 - 6	2 (17)	
Secchi (ft)	1.6 - 6.2	2.5 (17)	
Secchi (m)	0.5 - 1.9	0.8 (17)	
Color (Pt-Co Units)	28 - 362	109 (15)	
Specific Conductance (µS/cm@25 C)	99 - 279	171 (11)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rodman-out 3
GNIS Number	306164
Latitude	29.5083
Longitude	-81.9162
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2001 to 2017
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	65 (20 to 137)
TN Zone	TN5
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	949 (467 to 1902)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rodman-out 3 trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.72), total nitrogen (TN No Trend, $R^2 = 0.17$, p = 0.10), chlorophyll (CHL No Trend, $R^2 = 0.03$, p = 0.48) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.63).

Florida LAKEWATCH Report for Rosa in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

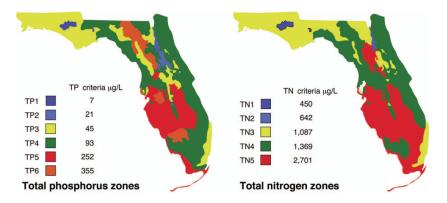
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

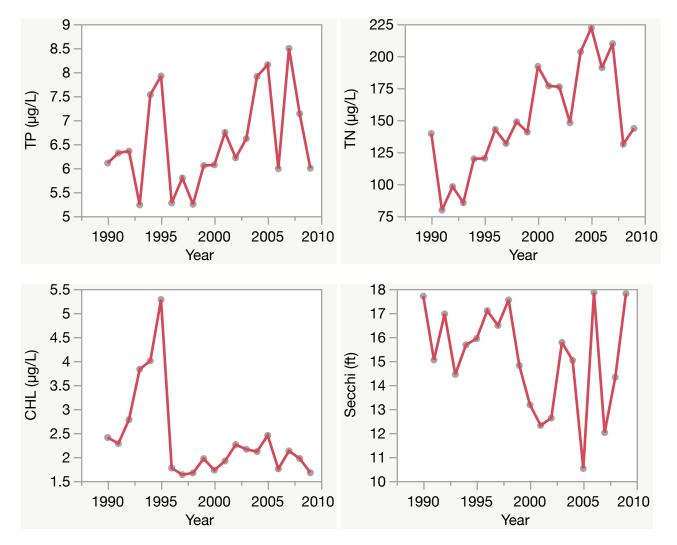

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	5 - 8	6 (20)
Total Nitrogen (µg/L)	80 - 222	145 (20)
Chlorophyll- uncorrected (µg/L)	2 - 5	2 (20)
Secchi (ft)	10.5 - 17.8	15.0 (20)
Secchi (m)	3.2 - 5.4	4.6 (20)
Color (Pt-Co Units)	1 - 4	2 (8)
Specific Conductance (µS/cm@25 C)	56 - 65	60 (3)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rosa
GNIS Number	289951
Latitude	29.7111
Longitude	-82.0094
Water Body Type	Lake
Surface Area (ha and acre)	52 ha or 127 acre
Period of Record (year)	1990 to 2009
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	6 (5 to 8)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	145 (80 to 222)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rosa trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.12$, p = 0.14), total nitrogen (TN Increasing, $R^2 = 0.48$, p = 0.00), chlorophyll (CHL Decreasing, $R^2 = 0.20$, p = 0.05) and Secchi depth (Secchi No Trend, $R^2 = 0.18$).

Florida LAKEWATCH Report for Ross in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

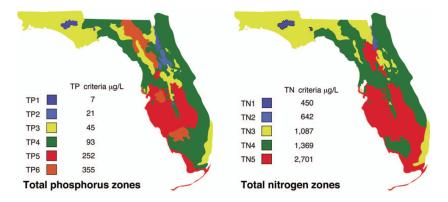
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

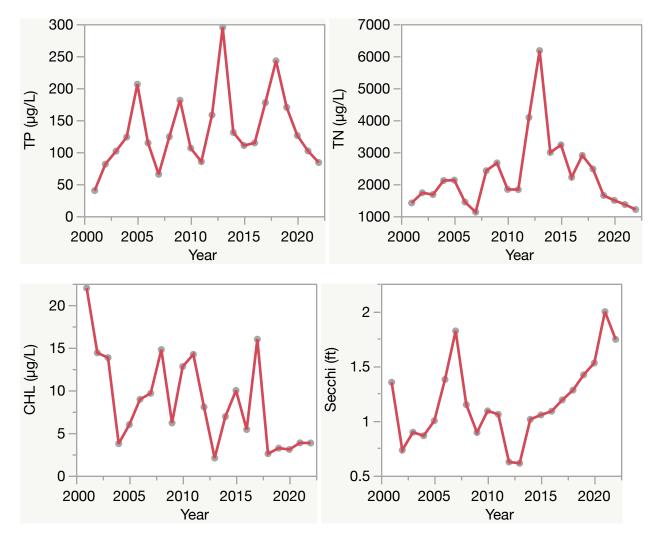

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	40 - 295	122 (22)	
Total Nitrogen (µg/L)	1125 - 6174	2081 (22)	
Chlorophyll- uncorrected (µg/L)	2 - 22	7 (22)	
Secchi (ft)	0.6 - 2.0	1.1 (22)	
Secchi (m)	0.2 - 0.6	0.3 (22)	
Color (Pt-Co Units)	132 - 884	414 (22)	
Specific Conductance (µS/cm@25 C)	57 - 118	75 (16)	
Lake Classification	Colored		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Ross
GNIS Number	289983
Latitude	29.7035
Longitude	-81.9983
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2001 to 2022
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	122 (40 to 295)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	2081 (1125 to 6174)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Ross trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.07$, p = 0.23), total nitrogen (TN No Trend, $R^2 = 0.01$, p = 0.65), chlorophyll (CHL Decreasing, $R^2 = 0.33$, p = 0.01) and Secchi depth (Secchi Increasing, $R^2 = 0.20$, p = 0.04).

Florida LAKEWATCH Report for Round in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

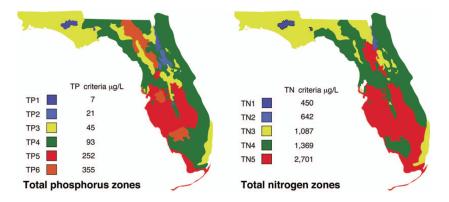
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

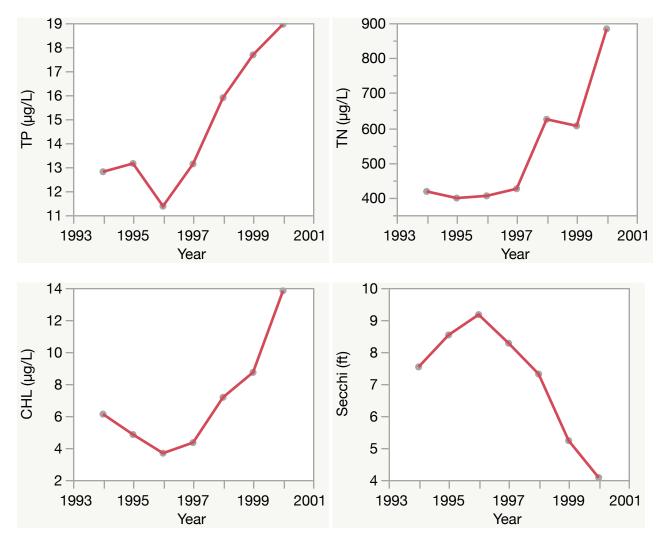

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	11 - 19	14 (7)	
Total Nitrogen (µg/L)	399 - 883	515 (7)	
Chlorophyll- uncorrected (µg/L)	4 - 14	6 (7)	
Secchi (ft)	4.1 - 9.2	6.9 (7)	
Secchi (m)	1.2 - 2.8	2.1 (7)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Putnam
Name	Round
GNIS Number	
Latitude	29.6250
Longitude	-81.7028
Water Body Type	Lake
Surface Area (ha and acre)	4 ha or 10 acre
Period of Record (year)	1994 to 2000
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	14 (11 to 19)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	515 (399 to 883)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Round trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.76$, p = 0.01), total nitrogen (TN Increasing, $R^2 = 0.75$, p = 0.01), chlorophyll (CHL Increasing, $R^2 = 0.58$, p = 0.05) and Secchi depth (Secchi Decreasing, $R^2 = 0.62$, p = 0.04).

Florida LAKEWATCH Report for Rowan in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	11 - 38	21 (24)
Total Nitrogen (µg/L)	705 - 8346	2476 (24)
Chlorophyll- uncorrected (µg/L)	3 - 39	11 (24)
Secchi (ft)	1.1 - 6.4	2.4 (24)
Secchi (m)	0.3 - 2.0	0.7 (24)
Color (Pt-Co Units)	41 - 424	165 (21)
Specific Conductance (µS/cm@25 C)	51 - 106	68 (16)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Rowan
GNIS Number	290017
Latitude	29.6771
Longitude	-82.0169
Water Body Type	Lake
Surface Area (ha and acre)	106 ha or 261 acre
Period of Record (year)	1997 to 2022
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	21 (11 to 38)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	2476 (705 to 8346)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Rowan trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.29$, p = 0.01), total nitrogen (TN Increasing, $R^2 = 0.27$, p = 0.01), chlorophyll (CHL No Trend, $R^2 = 0.09$, p = 0.15) and Secchi depth (Secchi Decreasing, $R^2 = 0.31$, p = 0.00).

Florida LAKEWATCH Report for Silver in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

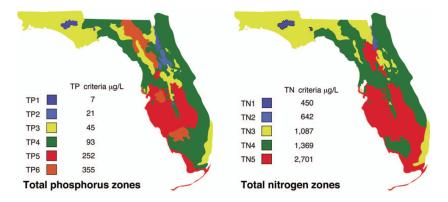
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

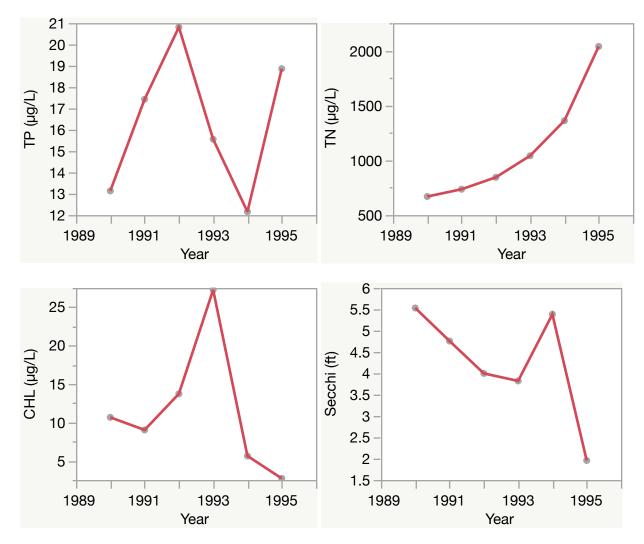

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	12 - 21	16 (6)	
Total Nitrogen (µg/L)	670 - 2038	1031 (6)	
Chlorophyll- uncorrected (µg/L)	3 - 27	9 (6)	
Secchi (ft)	2.0 - 5.5	4.0 (6)	
Secchi (m)	0.6 - 1.7	1.2 (6)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Silver
GNIS Number	295018
Latitude	29.4438
Longitude	-81.5728
Water Body Type	Lake
Surface Area (ha and acre)	31 ha or 76 acre
Period of Record (year)	1990 to 1995
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	16 (12 to 21)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1031 (670 to 2038)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Silver trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.82), total nitrogen (TN Increasing, $R^2 = 0.85$, p = 0.01), chlorophyll (CHL No Trend, $R^2 = 0.05$, p = 0.67) and Secchi depth (Secchi No Trend, $R^2 = 0.43$, p = 0.16).

Florida LAKEWATCH Report for Silver 2 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

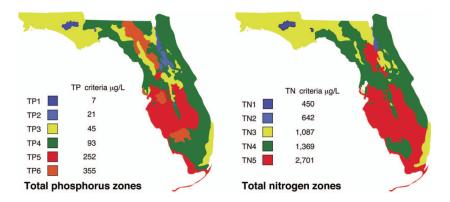
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	10 - 11	11 (2)	
Total Nitrogen (µg/L)	277 - 342	308 (2)	
Chlorophyll- uncorrected (μ g/L)	3 - 8	5 (2)	
Secchi (ft)	10.5 - 14.3	12.2 (2)	
Secchi (m)	3.2 - 4.3	3.7 (2)	
Color (Pt-Co Units)	5 - 6	6 (2)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Silver 2
GNIS Number	
Latitude	29.5943
Longitude	-81.9799
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2003 to 2004
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	11 (10 to 11)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	308 (277 to 342)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Silver 3 in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

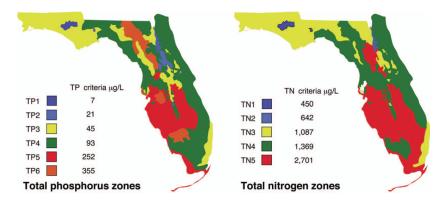
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 9	9 (1)
Total Nitrogen (µg/L)	604 - 604	604 (1)
Chlorophyll- uncorrected (µg/L)	2 - 2	2 (1)
Secchi (ft)	11.8 - 11.8	11.8 (1)
Secchi (m)	3.6 - 3.6	3.6 (1)
Color (Pt-Co Units)	12 - 12	12 (1)
Specific Conductance (µS/cm@25 C)	133 - 133	133 (1)
Lake Classification	Clear Hardwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Silver 3
GNIS Number	291124
Latitude	29.6193
Longitude	-81.7147
Water Body Type	Lake
Surface Area (ha and acre)	23.7 ha or 58 acre
Period of Record (year)	2007 to 2007
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	9 (9 to 9)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	604 (604 to 604)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for South Bull Pond in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

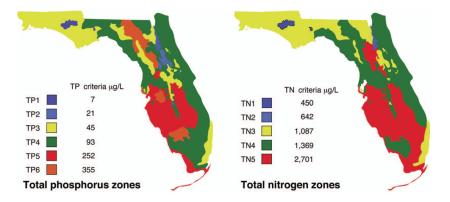
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	10 - 13	11 (2)
Total Nitrogen (µg/L)	430 - 466	448 (2)
Chlorophyll- uncorrected (μ g/L)	2 - 5	4 (2)
Secchi (ft)	6.9 - 7.8	7.4 (2)
Secchi (m)	2.1 - 2.4	2.2 (2)
Color (Pt-Co Units)	22 - 22	22 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	South Bull Pond
GNIS Number	291353
Latitude	29.6396
Longitude	-82.0488
Water Body Type	Lake
Surface Area (ha and acre)	140 ha or 349 acre
Period of Record (year)	2000 to 2001
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	11 (10 to 13)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	448 (430 to 466)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for South Estella in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

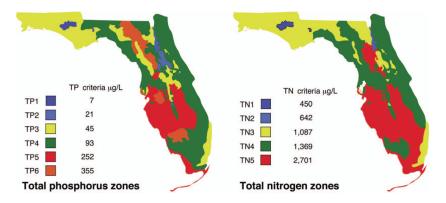
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

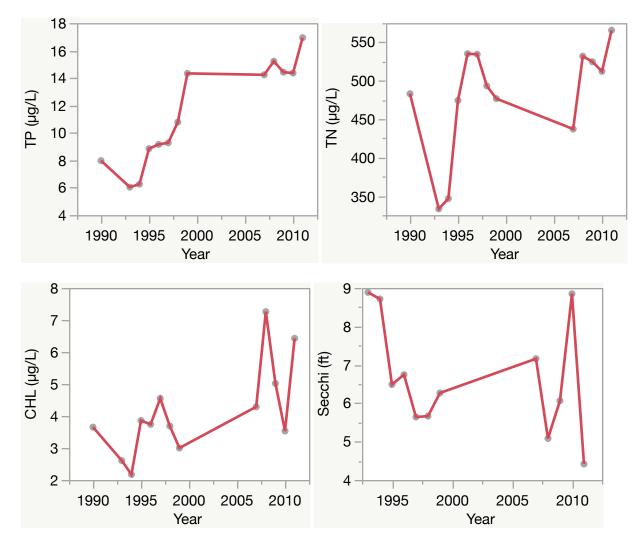

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	6 - 17	11 (13)
Total Nitrogen (µg/L)	333 - 566	475 (13)
Chlorophyll- uncorrected (μ g/L)	2 - 7	4 (13)
Secchi (ft)	4.4 - 8.9	6.5 (12)
Secchi (m)	1.3 - 2.7	2.0 (12)
Color (Pt-Co Units)	12 - 19	14 (5)
Specific Conductance (µS/cm@25 C)	70 - 114	91 (5)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	South Estella
GNIS Number	
Latitude	29.4229
Longitude	-81.6067
Water Body Type	Lake
Surface Area (ha and acre)	125 ha or 308 acre
Period of Record (year)	1990 to 2011
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	11 (6 to 17)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	475 (333 to 566)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake South Estella trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.83$, p = 0.00), total nitrogen (TN No Trend, $R^2 = 0.26$, p = 0.08), chlorophyll (CHL Increasing, $R^2 = 0.44$, p = 0.01) and Secchi depth (Secchi No Trend, $R^2 = 0.12$, p = 0.27).

Florida LAKEWATCH Report for Spring in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

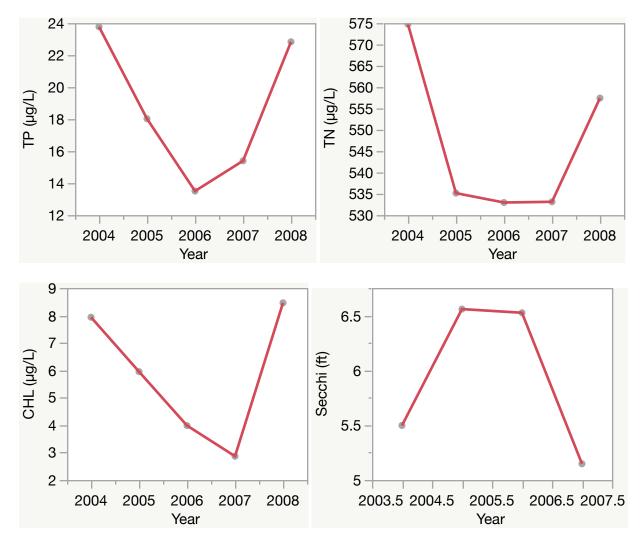

Parameter	Minimum and Maximum Grand Geometric	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	14 - 24	18 (5)
Total Nitrogen (µg/L)	533 - 575	546 (5)
Chlorophyll- uncorrected (µg/L)	3 - 8	5 (5)
Secchi (ft)	5.1 - 6.6	5.9 (4)
Secchi (m)	1.6 - 2.0	1.8 (4)
Color (Pt-Co Units)	13 - 41	22 (4)
Specific Conductance (µS/cm@25 C)	47 - 47	47 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Spring
GNIS Number	
Latitude	29.6014
Longitude	-82.0085
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2004 to 2008
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	18 (14 to 24)
TN Zone	TN2
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	546 (533 to 575)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Spring trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.03$, p = 0.80), total nitrogen (TN No Trend, $R^2 = 0.10$, p = 0.61), chlorophyll (CHL No Trend, $R^2 = 0.02$, p = 0.83) and Secchi depth (Secchi No Trend, $R^2 = 0.04$, p = 0.81).

Florida LAKEWATCH Report for Star in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

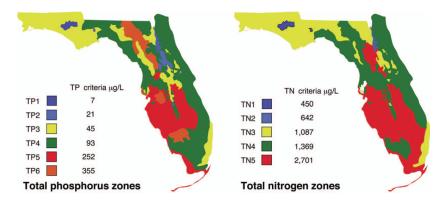
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

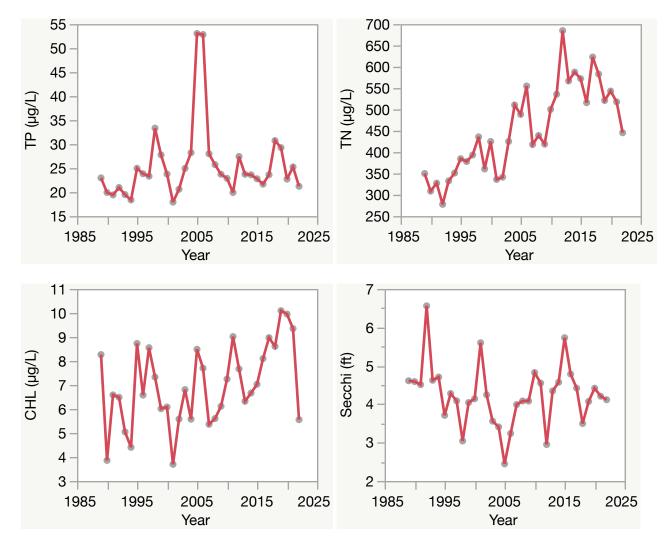

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	18 - 53	25 (34)
Total Nitrogen (µg/L)	278 - 685	443 (34)
Chlorophyll- uncorrected (µg/L)	4 - 10	7 (34)
Secchi (ft)	2.4 - 6.6	4.2 (34)
Secchi (m)	0.7 - 2.0	1.3 (34)
Color (Pt-Co Units)	17 - 127	47 (22)
Specific Conductance (µS/cm@25 C)	42 - 67	53 (16)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Star
GNIS Number	291629
Latitude	29.5299
Longitude	-82.0411
Water Body Type	Lake
Surface Area (ha and acre)	116 ha or 287 acre
Period of Record (year)	1989 to 2022
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	25 (18 to 53)
TN Zone	TN5
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	443 (278 to 685)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Star trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.49), total nitrogen (TN Increasing, $R^2 = 0.64$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.21$, p = 0.01) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.46).

Florida LAKEWATCH Report for Stella in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

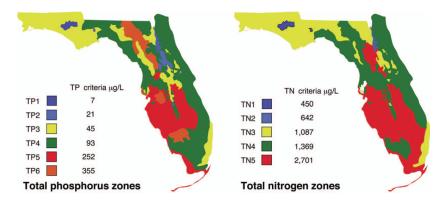
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

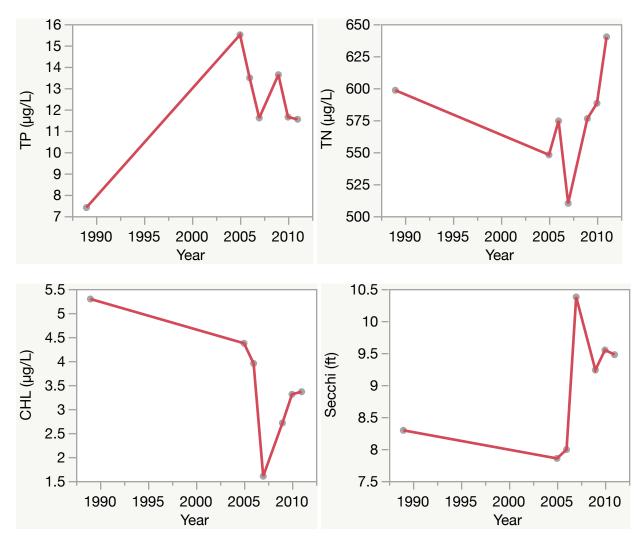

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	7 - 15	12 (7)
Total Nitrogen (µg/L)	510 - 640	575 (7)
Chlorophyll- uncorrected (µg/L)	2 - 5	3 (7)
Secchi (ft)	7.9 - 10.4	8.9 (7)
Secchi (m)	2.4 - 3.2	2.7 (7)
Color (Pt-Co Units)	13 - 24	17 (5)
Specific Conductance (µS/cm@25 C)	206 - 239	218 (3)
Lake Classification	Clear Hardwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Stella
GNIS Number	295019
Latitude	29.4295
Longitude	-81.5141
Water Body Type	Lake
Surface Area (ha and acre)	125 ha or 308 acre
Period of Record (year)	1989 to 2011
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	12 (7 to 15)
TN Zone	TN3
Grand TN Geometric Mean Concentration (μ g/L, min. and max.)	575 (510 to 640)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Stella trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.44$, p = 0.10), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.96), chlorophyll (CHL No Trend, $R^2 = 0.48$, p = 0.08) and Secchi depth (Secchi No Trend, $R^2 = 0.22$, p = 0.29).

Florida LAKEWATCH Report for Suggs in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

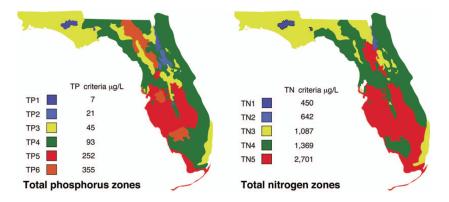
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

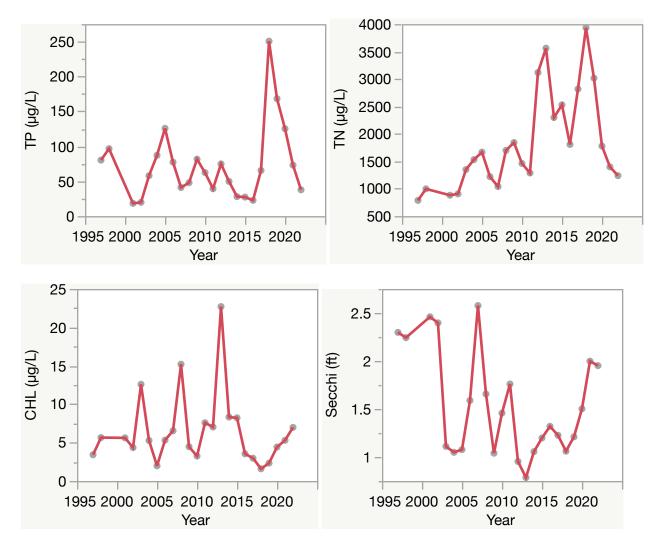

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	18 - 251	59 (24)
Total Nitrogen (µg/L)	787 - 3933	1660 (24)
Chlorophyll- uncorrected (µg/L)	2 - 23	5 (24)
Secchi (ft)	0.8 - 2.6	1.5 (24)
Secchi (m)	0.2 - 0.8	0.4 (24)
Color (Pt-Co Units)	115 - 683	329 (21)
Specific Conductance (µS/cm@25 C)	55 - 129	77 (16)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Suggs
GNIS Number	291789
Latitude	29.6877
Longitude	-82.0186
Water Body Type	Lake
Surface Area (ha and acre)	73 ha or 180 acre
Period of Record (year)	1997 to 2022
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	59 (18 to 251)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1660 (787 to 3933)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Suggs trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.05$, p = 0.31), total nitrogen (TN Increasing, $R^2 = 0.32$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.00$, p = 0.87) and Secchi depth (Secchi No Trend, $R^2 = 0.15$, p = 0.06).

Florida LAKEWATCH Report for Swan in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

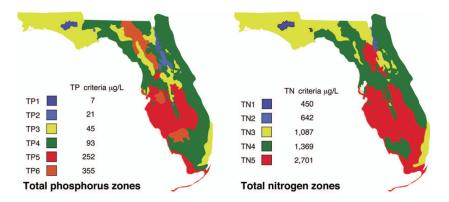
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

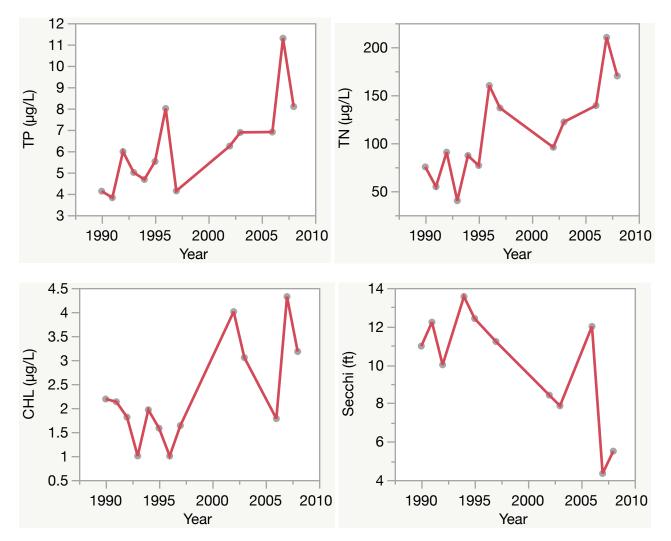

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	4 - 11	6 (13)
Total Nitrogen (µg/L)	40 - 210	102 (13)
Chlorophyll- uncorrected (µg/L)	1 - 4	2 (13)
Secchi (ft)	4.3 - 13.6	9.4 (11)
Secchi (m)	1.3 - 4.1	2.9 (11)
Color (Pt-Co Units)	2 - 2	2 (4)
Specific Conductance (µS/cm@25 C)	67 - 69	68 (2)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Swan
GNIS Number	291925
Latitude	29.7283
Longitude	-82.0105
Water Body Type	Lake
Surface Area (ha and acre)	178 ha or 439.8 acre
Period of Record (year)	1990 to 2008
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	6 (4 to 11)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	102 (40 to 210)


- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Swan trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.57$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.60$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.41$, p = 0.02) and Secchi depth (Secchi Decreasing, $R^2 = 0.50$, p = 0.02).

Florida LAKEWATCH Report for Tucker in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

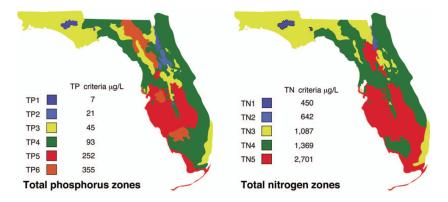
a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual Minimum calculated Maximum ca		Minimum calculated		calculated
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.


Parameter	Minimum and Maximum Grand Geometric Me	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	26 - 59	36 (3)
Total Nitrogen (µg/L)	1539 - 1699	1603 (3)
Chlorophyll- uncorrected (µg/L)	7 - 25	14 (3)
Secchi (ft)	1.0 - 2.0	1.5 (3)
Secchi (m)	0.3 - 0.6	0.5 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Tucker
GNIS Number	
Latitude	29.7211
Longitude	-81.9698
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 1998
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	36 (26 to 59)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1603 (1539 to 1699)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Twin West in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

Long-Term Data Summary for Lakes (Table 2): Definitions

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

¹ For lakes with color > 40 PCU in the West Central Nutrient Watershed Region, the maximum TP limit shall be the 490 μ g/L TP streams threshold for the region.

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Table 2. Long-term trophic state data collected monthly by LAKEWATCH volunteers and classification variables color and specific conductance (collected quarterly). Values in bold can be used with Table 1 to evaluate compliance with nutrient criteria.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	18 - 45	23 (6)	
Total Nitrogen (µg/L)	527 - 774	673 (6)	
Chlorophyll- uncorrected (µg/L)	5 - 15	10 (6)	
Secchi (ft)	3.3 - 5.8	4.2 (6)	
Secchi (m)	1.0 - 1.8	1.3 (6)	
Color (Pt-Co Units)	51 - 99	73 (4)	
Specific Conductance (µS/cm@25 C)	65 - 74	69 (4)	
Lake Classification	Colored		

Base File Data for Lakes: Definitions and Nutrient Zone Maps

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Twin West
GNIS Number	306526
Latitude	29.6201
Longitude	-81.8601
Water Body Type	Lake
Surface Area (ha and acre)	45 ha or 110 acre
Period of Record (year)	1996 to 2016
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	23 (18 to 45)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	673 (527 to 774)

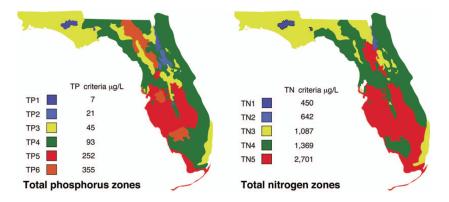
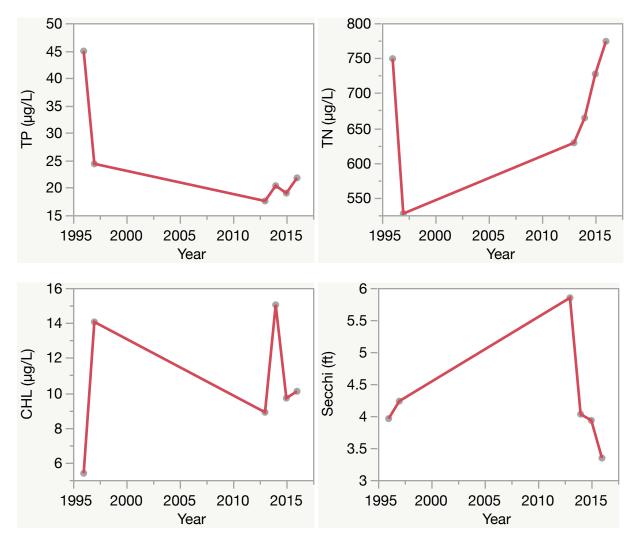


Figure 1. Maps showing Florida phosphorus and nitrogen zones and the nutrient concentrations of the upper 90% of lakes within each zone (Bachmann et al. 2012). Explanation on how to interpret the Nutrient Zones on page 4.

Interpreting FDEP's Numeric Nutrient Criteria (NNC): These are instructions for using Table 1 and 2 to determine impairment status based on FDEP's NNC.

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.


Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

Interpreting Florida LAKEWATCH's Nutrient Zones: These are instructions for using Table 3 and Figure 1 to determine nutrient status based on Nutrient Zones.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Twin West trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.58$, p = 0.08), total nitrogen (TN No Trend, $R^2 = 0.14$, p = 0.47), chlorophyll (CHL No Trend, $R^2 = 0.04$, p = 0.71) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.96).

Florida LAKEWATCH Report for Wimberly in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

Long-Term Data Summary for Lakes (Table 2): Definitions

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

¹ For lakes with color > 40 PCU in the West Central Nutrient Watershed Region, the maximum TP limit shall be the 490 μ g/L TP streams threshold for the region.

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Table 2. Long-term trophic state data collected monthly by LAKEWATCH volunteers and classification variables color and specific conductance (collected quarterly). Values in bold can be used with Table 1 to evaluate compliance with nutrient criteria.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	16 - 16	16 (1)
Total Nitrogen (µg/L)	508 - 508	508 (1)
Chlorophyll- uncorrected (µg/L)	7 - 7	7 (1)
Secchi (ft)	6.1 - 6.1	6.1 (1)
Secchi (m)	1.8 - 1.8	1.8 (1)
Color (Pt-Co Units)	9 - 9	9 (1)
Specific Conductance (µS/cm@25 C)	58 - 58	58 (1)
Lake Classification	Clear Softwater	

Base File Data for Lakes: Definitions and Nutrient Zone Maps

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Wimberly
GNIS Number	
Latitude	29.5283
Longitude	-81.9502
Water Body Type	Lake
Surface Area (ha and acre)	ha or . acre
Period of Record (year)	2010 to 2010
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	16 (16 to 16)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	508 (508 to 508)

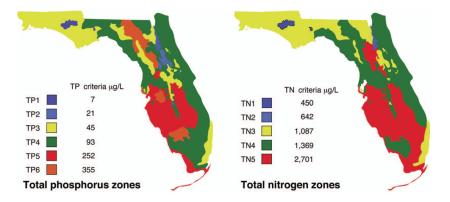


Figure 1. Maps showing Florida phosphorus and nitrogen zones and the nutrient concentrations of the upper 90% of lakes within each zone (Bachmann et al. 2012). Explanation on how to interpret the Nutrient Zones on page 4.

Interpreting FDEP's Numeric Nutrient Criteria (NNC): These are instructions for using Table 1 and 2 to determine impairment status based on FDEP's NNC.

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

Interpreting Florida LAKEWATCH's Nutrient Zones: These are instructions for using Table 3 and Figure 1 to determine nutrient status based on Nutrient Zones.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Winnott in Putnam County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

Long-Term Data Summary for Lakes (Table 2): Definitions

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 µg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

¹ For lakes with color > 40 PCU in the West Central Nutrient Watershed Region, the maximum TP limit shall be the 490 μ g/L TP streams threshold for the region.

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Table 2. Long-term trophic state data collected monthly by LAKEWATCH volunteers and classification variables color and specific conductance (collected quarterly). Values in bold can be used with Table 1 to evaluate compliance with nutrient criteria.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	9 - 23	13 (26)
Total Nitrogen (µg/L)	405 - 930	550 (26)
Chlorophyll- uncorrected (µg/L)	1 - 10	4 (26)
Secchi (ft)	3.5 - 13.2	7.7 (26)
Secchi (m)	1.1 - 4.0	2.4 (26)
Color (Pt-Co Units)	18 - 97	32 (13)
Specific Conductance (µS/cm@25 C)	57 - 75	64 (7)
Lake Classification	Clear Softwater	

Base File Data for Lakes: Definitions and Nutrient Zone Maps

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Putnam
Name	Winnott
GNIS Number	293413
Latitude	29.6494
Longitude	-82.0489
Water Body Type	Lake
Surface Area (ha and acre)	112 ha or 277 acre
Period of Record (year)	1989 to 2016
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP2
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	13 (9 to 23)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	550 (405 to 930)

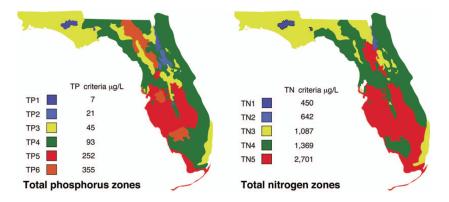
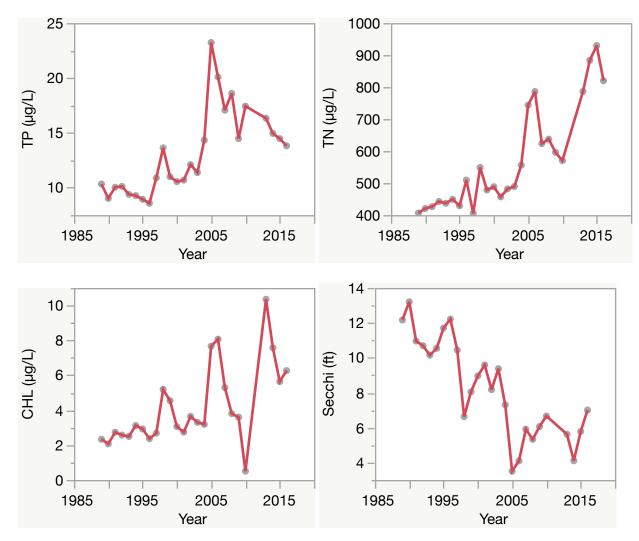


Figure 1. Maps showing Florida phosphorus and nitrogen zones and the nutrient concentrations of the upper 90% of lakes within each zone (Bachmann et al. 2012). Explanation on how to interpret the Nutrient Zones on page 4.

Interpreting FDEP's Numeric Nutrient Criteria (NNC): These are instructions for using Table 1 and 2 to determine impairment status based on FDEP's NNC.

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.


Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

Interpreting Florida LAKEWATCH's Nutrient Zones: These are instructions for using Table 3 and Figure 1 to determine nutrient status based on Nutrient Zones.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Winnott trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.46$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.76$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.37$, p = 0.00) and Secchi depth (Secchi Decreasing, $R^2 = 0.69$, p = 0.00).

