Florida LAKEWATCH Report for Alford Arm in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	29 - 41	35 (2)
Total Nitrogen (µg/L)	802 - 816	809 (2)
Chlorophyll- uncorrected (µg/L)	10 - 20	14 (2)
Secchi (ft)	2.7 - 2.7	2.7 (2)
Secchi (m)	0.8 - 0.8	0.8 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Alford Arm
GNIS Number	277742
Latitude	30.4500
Longitude	-84.1629
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2000
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	35 (29 to 41)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	809 (802 to 816)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Andrew in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department	of Environm	iental Protec	tion's Nun	ieric Nutrie	nt Criteria	for lakes.
1 4010 1.	1 101 144	Department			cion s run			IOI Iunco

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	5 - 5	5(1)
Total Nitrogen (µg/L)	330 - 330	330 (1)
Chlorophyll- uncorrected (µg/L)	2 - 2	2 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	15 - 15	15 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Andrew
GNIS Number	305216
Latitude	30.4023
Longitude	-84.4075
Water Body Type	Lake
Surface Area (ha and acre)	4 ha or 10 acre
Period of Record (year)	2003 to 2003
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP1
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	5 (5 to 5)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	330 (330 to 330)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Anna in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	16 - 19	17 (2)
Total Nitrogen (µg/L)	215 - 315	260 (2)
Chlorophyll- uncorrected (µg/L)	4 - 4	4 (2)
Secchi (ft)	1.7 - 1.7	1.7 (1)
Secchi (m)	0.5 - 0.5	0.5 (1)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Anna
GNIS Number	
Latitude	30.5595
Longitude	-84.2042
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2000
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	17 (16 to 19)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	260 (215 to 315)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Arrowhead in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	23 - 62	38 (21)	
Total Nitrogen (µg/L)	380 - 1187	708 (21)	
Chlorophyll- uncorrected (µg/L)	5 - 32	20 (21)	
Secchi (ft)	1.3 - 3.3	2.3 (21)	
Secchi (m)	0.4 - 1.0	0.7 (21)	
Color (Pt-Co Units)	11 - 21	15 (13)	
Specific Conductance (µS/cm@25 C)	52 - 63	58 (7)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Arrowhead
GNIS Number	
Latitude	30.5685
Longitude	-84.2181
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1993 to 2014
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	38 (23 to 62)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	708 (380 to 1187)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Arrowhead trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.03$, p = 0.46), total nitrogen (TN Increasing, $R^2 = 0.53$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.18$, p = 0.06) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.76).

Florida LAKEWATCH Report for Becky in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	41 - 111	66 (9)	
Total Nitrogen (µg/L)	876 - 2235	1278 (9)	
Chlorophyll- uncorrected (µg/L)	14 - 79	36 (9)	
Secchi (ft)	1.3 - 3.5	2.0 (9)	
Secchi (m)	0.4 - 1.1	0.6 (9)	
Color (Pt-Co Units)	11 - 27	18 (9)	
Specific Conductance (µS/cm@25 C)	32 - 46	38 (9)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Becky
GNIS Number	
Latitude	30.4962
Longitude	-84.1664
Water Body Type	Lake
Surface Area (ha and acre)	ha or . acre
Period of Record (year)	2010 to 2021
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	66 (41 to 111)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1278 (876 to 2235)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Becky trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.01$, p = 0.79), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.93), chlorophyll (CHL No Trend, $R^2 = 0.13$, p = 0.35) and Secchi depth (Secchi No Trend, $R^2 = 0.05$, p = 0.56).

Florida LAKEWATCH Report for Belmont in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	34 - 83	50 (9)
Total Nitrogen (µg/L)	758 - 2269	1271 (9)
Chlorophyll- uncorrected (µg/L)	13 - 84	25 (9)
Secchi (ft)	1.5 - 3.0	2.3 (8)
Secchi (m)	0.5 - 0.9	0.7 (8)
Color (Pt-Co Units)	14 - 31	21 (2)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Belmont
GNIS Number	2437385
Latitude	30.5388
Longitude	-84.1817
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1993 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	50 (34 to 83)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1271 (758 to 2269)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Belmont trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.25$, p = 0.17), total nitrogen (TN No Trend, $R^2 = 0.12$, p = 0.36), chlorophyll (CHL No Trend, $R^2 = 0.29$, p = 0.14) and Secchi depth (Secchi Decreasing, $R^2 = 0.62$, p = 0.02).

Florida LAKEWATCH Report for Blairstone in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	19 - 76	43 (18)	
Total Nitrogen (µg/L)	312 - 1251	602 (18)	
Chlorophyll- uncorrected (µg/L)	3 - 36	13 (17)	
Secchi (ft)	1.9 - 3.8	2.8 (13)	
Secchi (m)	0.6 - 1.2	0.8 (13)	
Color (Pt-Co Units)	8 - 21	12 (8)	
Specific Conductance (µS/cm@25 C)	119 - 157	140 (5)	
Lake Classification	Clear Hardwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Blairstone
GNIS Number	
Latitude	30.4139
Longitude	-84.2556
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1993 to 2015
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	43 (19 to 76)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	602 (312 to 1251)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Blairstone trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.07$, p = 0.29), total nitrogen (TN No Trend, $R^2 = 0.05$, p = 0.38), chlorophyll (CHL No Trend, $R^2 = 0.22$, p = 0.06) and Secchi depth (Secchi No Trend, $R^2 = 0.07$, p = 0.37).

Florida LAKEWATCH Report for Blue Heron in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	20 - 67	36 (29)	
Total Nitrogen (µg/L)	434 - 1042	637 (29)	
Chlorophyll- uncorrected (µg/L)	3 - 40	12 (29)	
Secchi (ft)	2.2 - 5.3	3.2 (29)	
Secchi (m)	0.7 - 1.6	1.0 (29)	
Color (Pt-Co Units)	10 - 23	12 (21)	
Specific Conductance (µS/cm@25 C)	50 - 87	71 (15)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Blue Heron
GNIS Number	2437419
Latitude	30.6009
Longitude	-84.2365
Water Body Type	Lake
Surface Area (ha and acre)	20 ha or 50 acre
Period of Record (year)	1993 to 2022
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	36 (20 to 67)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	637 (434 to 1042)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration
Figure 2. Lake Blue Heron trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.18$, p = 0.02), total nitrogen (TN No Trend, $R^2 = 0.01$, p = 0.69), chlorophyll (CHL No Trend, $R^2 = 0.12$, p = 0.07) and Secchi depth (Secchi Increasing, $R^2 = 0.30$, p = 0.00).

Florida LAKEWATCH Report for Bradford in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	11 - 38	21 (32)
Total Nitrogen (µg/L)	368 - 1102	584 (32)
Chlorophyll- uncorrected (µg/L)	5 - 25	10 (32)
Secchi (ft)	1.6 - 5.7	2.6 (32)
Secchi (m)	0.5 - 1.8	0.8 (32)
Color (Pt-Co Units)	27 - 163	84 (17)
Specific Conductance (µS/cm@25 C)	18 - 26	22 (11)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Bradford
GNIS Number	305368
Latitude	30.4073
Longitude	-84.3446
Water Body Type	Lake
Surface Area (ha and acre)	79 ha or 194 acre
Period of Record (year)	1988 to 2022
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	21 (11 to 38)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	584 (368 to 1102)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Bradford trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.21$, p = 0.01), total nitrogen (TN Increasing, $R^2 = 0.39$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.23$, p = 0.01) and Secchi depth (Secchi Decreasing, $R^2 = 0.66$, p = 0.00).

Florida LAKEWATCH Report for Campground Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	17 - 23	20 (2)
Total Nitrogen (µg/L)	331 - 380	355 (2)
Chlorophyll- uncorrected (µg/L)	4 - 6	5 (2)
Secchi (ft)	4.3 - 5.7	4.9 (2)
Secchi (m)	1.3 - 1.7	1.5 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Campground Pond
GNIS Number	305440
Latitude	30.4337
Longitude	-84.4227
Water Body Type	Lake
Surface Area (ha and acre)	8 ha or 20 acre
Period of Record (year)	1999 to 2000
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (17 to 23)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	355 (331 to 380)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Carolyn in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	24 - 43	32 (3)	
Total Nitrogen (µg/L)	303 - 424	347 (3)	
Chlorophyll- uncorrected (µg/L)	5 - 28	13 (3)	
Secchi (ft)	4.3 - 4.7	4.5 (3)	
Secchi (m)	1.3 - 1.4	1.4 (3)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Carolyn
GNIS Number	
Latitude	30.5553
Longitude	-84.2050
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1994 to 1998
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	32 (24 to 43)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	347 (303 to 424)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Carr in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department	of Environm	iental Protec	tion's Nun	ieric Nutrie	nt Criteria	for lakes.
1 4010 1.	1 101 144	Department			cion s run			IOI Iunco

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	13 - 13	13 (1)
Total Nitrogen (µg/L)	401 - 401	401 (1)
Chlorophyll- uncorrected (µg/L)	6 - 6	6 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	17 - 17	17 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Carr
GNIS Number	280066
Latitude	30.5769
Longitude	-84.2896
Water Body Type	Lake
Surface Area (ha and acre)	254 ha or 627.6 acre
Period of Record (year)	2005 to 2005
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	13 (13 to 13)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	401 (401 to 401)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Cascade in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	8 - 33	15 (3)
Total Nitrogen (µg/L)	633 - 757	711 (3)
Chlorophyll- uncorrected (µg/L)	5 - 7	6 (2)
Secchi (ft)	2.0 - 2.4	2.3 (3)
Secchi (m)	0.6 - 0.7	0.7 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Cascade
GNIS Number	305452
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1988 to 1990
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	15 (8 to 33)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	711 (633 to 757)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Chapman Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department	of Environm	iental Protec	tion's Nun	ieric Nutrie	nt Criteria	for lakes.
1 4010 1.	1 101 144	Department			cion s run			IOI Iunco

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	47 - 47	47 (1)
Total Nitrogen (µg/L)	380 - 380	380 (1)
Chlorophyll- uncorrected (µg/L)	11 - 11	11 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	28 - 28	28 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Chapman Pond
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2003 to 2003
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	47 (47 to 47)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	380 (380 to 380)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Clear in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department	of Environm	ental Protec	tion's Nun	neric Nutrier	nt Criteria	for lakes.
1 4010 11	1 IOI IMM	Department						IOI Iunco

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	3 - 3	3 (1)
Total Nitrogen (µg/L)	287 - 287	287 (1)
Chlorophyll- uncorrected (µg/L)	3 - 3	3 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	22 - 22	22 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Clear
GNIS Number	305587
Latitude	30.3522
Longitude	-84.4118
Water Body Type	Lake
Surface Area (ha and acre)	10 ha or 24 acre
Period of Record (year)	2003 to 2003
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP1
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	3 (3 to 3)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	287 (287 to 287)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Coolview Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	72 - 72	72 (1)
Total Nitrogen (µg/L)	653 - 653	653 (1)
Chlorophyll- uncorrected (µg/L)	8 - 8	8 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	24 - 24	24 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Coolview Pond
GNIS Number	
Latitude	30.5245
Longitude	-84.3550
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2002 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	72 (72 to 72)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	653 (653 to 653)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Diane in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	8 - 33	17 (25)
Total Nitrogen (µg/L)	298 - 647	437 (25)
Chlorophyll- uncorrected (µg/L)	2 - 14	6 (25)
Secchi (ft)	2.7 - 9.2	5.6 (25)
Secchi (m)	0.8 - 2.8	1.7 (25)
Color (Pt-Co Units)	7 - 14	10 (14)
Specific Conductance (µS/cm@25 C)	47 - 73	58 (8)
Lake Classification	Clear Softwater	
The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Diane
GNIS Number	281550
Latitude	30.5939
Longitude	-84.2335
Water Body Type	Lake
Surface Area (ha and acre)	31 ha or 75 acre
Period of Record (year)	1993 to 2017
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	17 (8 to 33)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	437 (298 to 647)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Diane trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.12$, p = 0.09), total nitrogen (TN Increasing, $R^2 = 0.20$, p = 0.03), chlorophyll (CHL No Trend, $R^2 = 0.07$, p = 0.20) and Secchi depth (Secchi No Trend, $R^2 = 0.13$, p = 0.08).

Florida LAKEWATCH Report for Duck in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	38 - 38	<u>38 (1)</u>
Total Nitrogen (µg/L)	796 - 796	796 (1)
Chlorophyll- uncorrected (µg/L)	15 - 15	15 (1)
Secchi (ft)	2.4 - 2.4	2.4 (1)
Secchi (m)	0.7 - 0.7	0.7 (1)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Duck
GNIS Number	
Latitude	30.5113
Longitude	-84.3568
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	38 (38 to 38)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	796 (796 to 796)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Eel in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	23 - 23	23 (1)
Total Nitrogen (µg/L)	797 - 797	797 (1)
Chlorophyll- uncorrected (µg/L)	17 - 17	17 (1)
Secchi (ft)	1.9 - 1.9	1.9 (1)
Secchi (m)	0.6 - 0.6	0.6 (1)
Color (Pt-Co Units)	153 - 153	153 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Eel
GNIS Number	
Latitude	30.4486
Longitude	-84.3708
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2005 to 2005
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	23 (23 to 23)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	797 (797 to 797)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Elizabeth in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	21 - 76	35 (7)
Total Nitrogen (µg/L)	312 - 804	465 (7)
Chlorophyll- uncorrected (µg/L)	7 - 109	18 (7)
Secchi (ft)	11.0 - 11.9	11.3 (6)
Secchi (m)	3.3 - 3.6	3.5 (6)
Color (Pt-Co Units)	8 - 8	8 (1)
Specific Conductance (µS/cm@25 C)	30 - 30	30 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Elizabeth
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	26 ha or 65 acre
Period of Record (year)	1995 to 2007
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	35 (21 to 76)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	465 (312 to 804)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Elizabeth trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.33$, p = 0.18), total nitrogen (TN No Trend, $R^2 = 0.45$, p = 0.10), chlorophyll (CHL Increasing, $R^2 = 0.82$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.94).

Florida LAKEWATCH Report for Erie in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	5 - 10	6 (11)
Total Nitrogen (µg/L)	376 - 722	441 (11)
Chlorophyll- uncorrected (µg/L)	1 - 9	2 (11)
Secchi (ft)	3.0 - 9.3	6.1 (9)
Secchi (m)	0.9 - 2.8	1.9 (9)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Erie
GNIS Number	282246
Latitude	30.3675
Longitude	-84.1334
Water Body Type	Lake
Surface Area (ha and acre)	21 ha or 51 acre
Period of Record (year)	1991 to 2006
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	6 (5 to 10)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	441 (376 to 722)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Erie trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.11$, p = 0.33), total nitrogen (TN No Trend, $R^2 = 0.30$, p = 0.08), chlorophyll (CHL No Trend, $R^2 = 0.05$, p = 0.51) and Secchi depth (Secchi Decreasing, $R^2 = 0.64$, p = 0.01).

Florida LAKEWATCH Report for Fisher in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes	Clear Hard Water Lakes				
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	15 - 25	20 (3)
Total Nitrogen (µg/L)	387 - 513	435 (3)
Chlorophyll- uncorrected (µg/L)	8 - 23	14 (2)
Secchi (ft)	2.0 - 3.5	2.8 (3)
Secchi (m)	0.6 - 1.1	0.8 (3)
Color (Pt-Co Units)	22 - 38	30 (3)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Fisher
GNIS Number	
Latitude	30.5651
Longitude	-84.1765
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2002 to 2005
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (15 to 25)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	435 (387 to 513)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Gannett Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department	of Environm	iental Protec	tion's Nun	ieric Nutrie	nt Criteria	for lakes.
1 4010 1.	1 101 144	Department			cion s run			IOI Iunco

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	52 - 52	52 (1)
Total Nitrogen (µg/L)	877 - 877	877 (1)
Chlorophyll- uncorrected (µg/L)	68 - 68	68 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	62 - 62	62 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Gannett Pond
GNIS Number	
Latitude	30.6521
Longitude	-84.2211
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2002 to 2002
Lake Trophic Status (CHL)	Hypereutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	52 (52 to 52)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	877 (877 to 877)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Goose Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	128 - 148	138 (2)
Total Nitrogen (µg/L)	538 - 728	626 (2)
Chlorophyll- uncorrected (µg/L)	17 - 21	19 (2)
Secchi (ft)	2.2 - 2.5	2.3 (2)
Secchi (m)	0.7 - 0.8	0.7 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Goose Pond
GNIS Number	
Latitude	30.4763
Longitude	-84.2445
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1998 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	138 (128 to 148)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	626 (538 to 728)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Grassy in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	9 - 31	18 (3)
Total Nitrogen (µg/L)	520 - 1600	824 (3)
Chlorophyll- uncorrected (µg/L)	4 - 6	5 (3)
Secchi (ft)	1.8 - 3.0	2.3 (3)
Secchi (m)	0.6 - 0.9	0.7 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Grassy
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1988 to 1990
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	18 (9 to 31)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	824 (520 to 1600)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Griffin in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	17 - 46	30 (6)
Total Nitrogen (µg/L)	407 - 1427	686 (6)
Chlorophyll- uncorrected (µg/L)	3 - 44	12 (6)
Secchi (ft)	3.1 - 4.2	3.7 (3)
Secchi (m)	1.0 - 1.3	1.1 (3)
Color (Pt-Co Units)	11 - 24	14 (3)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Griffin
GNIS Number	
Latitude	30.5783
Longitude	-84.2552
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2003 to 2008
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	30 (17 to 46)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	686 (407 to 1427)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Griffin trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.04$, p = 0.71), total nitrogen (TN Increasing, $R^2 = 0.68$, p = 0.04), chlorophyll (CHL No Trend, $R^2 = 0.09$, p = 0.56) and Secchi depth (Secchi No Trend, $R^2 = 0.53$, p = 0.48).

Florida LAKEWATCH Report for Hall in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	11 - 19	13 (23)	
Total Nitrogen (µg/L)	292 - 423	348 (23)	
Chlorophyll- uncorrected (µg/L)	1 - 10	4 (23)	
Secchi (ft)	11.0 - 17.6	13.7 (23)	
Secchi (m)	3.4 - 5.4	4.2 (23)	
Color (Pt-Co Units)	6 - 14	8 (11)	
Specific Conductance (µS/cm@25 C)	19 - 23	22 (7)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Hall
GNIS Number	283627
Latitude	30.5229
Longitude	-84.2510
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1990 to 2017
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	13 (11 to 19)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	348 (292 to 423)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Hall trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.21$, p = 0.03), total nitrogen (TN No Trend, $R^2 = 0.01$, p = 0.73), chlorophyll (CHL Decreasing, $R^2 = 0.24$, p = 0.02) and Secchi depth (Secchi Decreasing, $R^2 = 0.29$, p = 0.01).

Florida LAKEWATCH Report for Harriman Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	95 - 95	95 (1)
Total Nitrogen (µg/L)	890 - 890	890 (1)
Chlorophyll- uncorrected (µg/L)	32 - 32	32 (1)
Secchi (ft)	2.5 - 2.5	2.5 (1)
Secchi (m)	0.8 - 0.8	0.8 (1)
Color (Pt-Co Units)	19 - 19	19 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Harriman Pond
GNIS Number	
Latitude	30.4746
Longitude	-84.2522
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2002 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	95 (95 to 95)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	890 (890 to 890)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Heritage in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	32 - 38	35 (2)
Total Nitrogen (µg/L)	561 - 653	605 (2)
Chlorophyll- uncorrected (µg/L)	19 - 24	21 (2)
Secchi (ft)	2.8 - 3.4	3.0 (2)
Secchi (m)	0.8 - 1.0	0.9 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Heritage
GNIS Number	298242
Latitude	30.4172
Longitude	-84.1472
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2000
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	35 (32 to 38)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	605 (561 to 653)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Hiawatha in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	7 - 50	15 (20)
Total Nitrogen (µg/L)	332 - 1240	605 (20)
Chlorophyll- uncorrected (µg/L)	3 - 53	7 (20)
Secchi (ft)	1.5 - 6.9	2.7 (19)
Secchi (m)	0.5 - 2.1	0.8 (19)
Color (Pt-Co Units)	52 - 271	150 (7)
Specific Conductance (µS/cm@25 C)	25 - 42	31 (3)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Hiawatha
GNIS Number	305803
Latitude	30.4120
Longitude	-84.3483
Water Body Type	Lake
Surface Area (ha and acre)	15 ha or 37.1 acre
Period of Record (year)	1988 to 2018
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	15 (7 to 50)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	605 (332 to 1240)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Hiawatha trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.16$, p = 0.08), total nitrogen (TN Increasing, $R^2 = 0.41$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.13$, p = 0.12) and Secchi depth (Secchi No Trend, $R^2 = 0.17$, p = 0.08).

Florida LAKEWATCH Report for Horne Springs in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	34 - 36	35 (3)
Total Nitrogen (µg/L)	265 - 311	281 (3)
Chlorophyll- uncorrected (µg/L)	0 - 1	1 (3)
Secchi (ft)	8.2 - 8.2	8.2 (1)
Secchi (m)	2.5 - 2.5	2.5 (1)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Horne Springs
GNIS Number	284266
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1993 to 1995
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	35 (34 to 36)
TN Zone	TN4
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	281 (265 to 311)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Iamonia in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	15 - 32	20 (6)
Total Nitrogen (µg/L)	450 - 923	595 (6)
Chlorophyll- uncorrected (μ g/L)	5 - 25	10 (6)
Secchi (ft)	1.3 - 4.2	3.0 (5)
Secchi (m)	0.4 - 1.3	0.9 (5)
Color (Pt-Co Units)	52 - 52	52 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Iamonia
GNIS Number	284452
Latitude	30.6397
Longitude	-84.2039
Water Body Type	Lake
Surface Area (ha and acre)	2330 ha or 5757 acre
Period of Record (year)	1992 to 2003
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (15 to 32)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	595 (450 to 923)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Iamonia trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.54$, p = 0.10), total nitrogen (TN No Trend, $R^2 = 0.50$, p = 0.12), chlorophyll (CHL No Trend, $R^2 = 0.40$, p = 0.18) and Secchi depth (Secchi No Trend, $R^2 = 0.52$, p = 0.17).

Florida LAKEWATCH Report for Jackson in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Grand Geometric	
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	17 - 51	25 (15)
Total Nitrogen (µg/L)	446 - 867	672 (15)
Chlorophyll- uncorrected (µg/L)	5 - 20	9 (14)
Secchi (ft)	4.7 - 7.5	6.0 (13)
Secchi (m)	1.4 - 2.3	1.8 (13)
Color (Pt-Co Units)	7 - 45	19 (15)
Specific Conductance (µS/cm@25 C)	29 - 70	42 (12)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Jackson
GNIS Number	284694
Latitude	30.5246
Longitude	-84.3514
Water Body Type	Lake
Surface Area (ha and acre)	1620 ha or 4004 acre
Period of Record (year)	2002 to 2021
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	25 (17 to 51)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	672 (446 to 867)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Jackson trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.11$, p = 0.23), total nitrogen (TN Decreasing, $R^2 = 0.28$, p = 0.04), chlorophyll (CHL No Trend, $R^2 = 0.07$, p = 0.37) and Secchi depth (Secchi No Trend, $R^2 = 0.01$, p = 0.72).

Florida LAKEWATCH Report for Jamie in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)	
Total Phosphorus (µg/L)	67 - 131	90 (9)	
Total Nitrogen (µg/L)	794 - 3588	1461 (9)	
Chlorophyll- uncorrected (µg/L)	16 - 87	38 (9)	
Secchi (ft)	0.6 - 2.3	1.4 (9)	
Secchi (m)	0.2 - 0.7	0.4 (9)	
Color (Pt-Co Units)	12 - 36	19 (9)	
Specific Conductance (µS/cm@25 C)	52 - 82	60 (9)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Jamie
GNIS Number	
Latitude	30.5533
Longitude	-84.2074
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2011 to 2019
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	90 (67 to 131)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1461 (794 to 3588)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Jamie trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.34$, p = 0.10), total nitrogen (TN Decreasing, $R^2 = 0.72$, p = 0.00), chlorophyll (CHL Decreasing, $R^2 = 0.46$, p = 0.05) and Secchi depth (Secchi Increasing, $R^2 = 0.56$, p = 0.02).

Florida LAKEWATCH Report for Jane in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	20 - 20	20 (1)	
Total Nitrogen (µg/L)	629 - 629	629 (1)	
Chlorophyll- uncorrected (µg/L)	7 - 7	7 (1)	
Secchi (ft)	5.0 - 5.0	5.0 (1)	
Secchi (m)	1.5 - 1.5	1.5 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Jane
GNIS Number	
Latitude	30.5462
Longitude	-84.2729
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2001 to 2001
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (20 to 20)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	629 (629 to 629)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Jean in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	56 - 56	56 (1)	
Total Nitrogen (µg/L)	836 - 836	836 (1)	
Chlorophyll- uncorrected (μ g/L)	32 - 32	32 (1)	
Secchi (ft)	2.9 - 2.9	2.9 (1)	
Secchi (m)	0.9 - 0.9	0.9 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Jean
GNIS Number	283071
Latitude	30.5546
Longitude	-84.1991
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	56 (56 to 56)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	836 (836 to 836)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for KCC 4 in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	120 - 178	143 (4)
Total Nitrogen (µg/L)	673 - 1270	827 (4)
Chlorophyll- uncorrected (µg/L)	11 - 74	23 (4)
Secchi (ft)	1.3 - 2.0	1.6 (2)
Secchi (m)	0.4 - 0.6	0.5 (2)
Color (Pt-Co Units)	17 - 24	20 (2)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	KCC 4
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	143 (120 to 178)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	827 (673 to 1270)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for KCC 8 in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)	
Total Phosphorus (µg/L)	29 - 68	50 (4)	
Total Nitrogen (µg/L)	350 - 632	459 (4)	
Chlorophyll- uncorrected (µg/L)	3 - 19	8 (4)	
Secchi (ft)	2.5 - 2.8	2.6 (3)	
Secchi (m)	0.8 - 0.9	0.8 (3)	
Color (Pt-Co Units)	7 - 13	10 (2)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	KCC 8
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	50 (29 to 68)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	459 (350 to 632)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for KCC 12 in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)	
Total Phosphorus (µg/L)	132 - 154	143 (4)	
Total Nitrogen (µg/L)	891 - 1322	1185 (4)	
Chlorophyll- uncorrected (µg/L)	43 - 59	52 (4)	
Secchi (ft)	2.0 - 2.5	2.3 (4)	
Secchi (m)	0.6 - 0.8	0.7 (4)	
Color (Pt-Co Units)	13 - 30	20 (2)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	KCC 12
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2002
Lake Trophic Status (CHL)	Hypereutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	143 (132 to 154)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1185 (891 to 1322)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for KCC 14 in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)	
Total Phosphorus (µg/L)	95 - 170	134 (4)	
Total Nitrogen (µg/L)	496 - 1105	760 (4)	
Chlorophyll- uncorrected (µg/L)	11 - 66	32 (4)	
Secchi (ft)	1.9 - 3.0	2.4 (4)	
Secchi (m)	0.6 - 0.9	0.7 (4)	
Color (Pt-Co Units)	18 - 27	22 (2)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	KCC 14
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	134 (95 to 170)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	760 (496 to 1105)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Killarney in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	68 - 103	82 (4)	
Total Nitrogen (µg/L)	590 - 1313	885 (4)	
Chlorophyll- uncorrected (µg/L)	8 - 56	22 (4)	
Secchi (ft)	2.2 - 4.0	3.2 (4)	
Secchi (m)	0.7 - 1.2	1.0 (4)	
Color (Pt-Co Units)	11 - 18	14 (2)	
Specific Conductance (µS/cm@25 C)	56 - 82	68 (2)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Killarney
GNIS Number	286058
Latitude	30.5324
Longitude	-84.2130
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	82 (68 to 103)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	885 (590 to 1313)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Lee in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).
| Long Term Geometric | Annual | Minimum calculated | | Maximum calculated | |
|-----------------------------------|--------------|--------------------|-------------|------------------------|------------|
| Mean Lake Color and Long- | Geometric | numeric int | erpretation | numeric interpretation | |
| Term Geometric Mean | Mean | Annual | Annual | Annual | Annual |
| Color, Alkalinity and | Chlorophyll- | Geometric | Geometric | Geometric | Geometric |
| Specific Conductance | corrected | Mean Total | Mean Total | Mean Total | Mean Total |
| | | Phosphorus | Nitrogen | Phosphorus | Nitrogen |
| > 40 Platinum Cobalt Units | 20 µg/L | 50 µg/L | 1270 μg/L | 160 μg/L ¹ | 2230 µg/L |
| Colored Lakes | | | | | |
| \leq 40 Platinum Cobalt Units | | | | | |
| and $> 20 \text{ mg/L CaCO}_3$ | 20 µg/L | 30 µg/L | 1050 μg/L | 90 μg/L | 1910 µg/L |
| or | | | | | |
| >100 µS/cm@25 C | | | | | |
| Clear Hard Water Lakes | | | | | |
| \leq 40 Platinum Cobalt Units | | | | | |
| and $\leq 20 \text{ mg/L CaCO}_3$ | 6 µg/L | 10 µg/L | 510 | 30 µg/L | 930 μg/L |
| or | | | μg/L | | |
| < 100 µS/cm@25 C | | | | | |
| Clear Soft Water Lakes | | | | | |

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	48 - 82	64 (3)
Total Nitrogen (µg/L)	450 - 731	567 (3)
Chlorophyll- uncorrected (µg/L)	7 - 29	17 (3)
Secchi (ft)	2.9 - 4.0	3.3 (3)
Secchi (m)	0.9 - 1.2	1.0 (3)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Lee
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1997 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	64 (48 to 82)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	567 (450 to 731)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Little Jackson in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department	of Environm	iental Protec	tion's Nun	ieric Nutrie	nt Criteria	for lakes.
1 4010 1.	1 101 144	Department			cion s run			IOI Iunco

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	17 - 20	19 (2)
Total Nitrogen (µg/L)	494 - 586	538 (2)
Chlorophyll- uncorrected (μ g/L)	7 - 7	7 (2)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	24 - 45	33 (2)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Little Jackson
GNIS Number	2747138
Latitude	30.5258
Longitude	-84.3587
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2002 to 2003
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	19 (17 to 20)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	538 (494 to 586)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Lofton Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	5 - 5	5(1)
Total Nitrogen (µg/L)	427 - 427	427 (1)
Chlorophyll- uncorrected (µg/L)	3 - 3	3 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	7 - 7	7 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Lofton Pond
GNIS Number	305974
Latitude	30.3541
Longitude	-84.3801
Water Body Type	Lake
Surface Area (ha and acre)	5 ha or 12.4 acre
Period of Record (year)	2003 to 2003
Lake Trophic Status (CHL)	Oligotrophic
TP Zone	TP1
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	5 (5 to 5)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	427 (427 to 427)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Longleat in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	38 - 66	47 (5)	
Total Nitrogen (µg/L)	510 - 1089	795 (5)	
Chlorophyll- uncorrected (µg/L)	10 - 25	15 (5)	
Secchi (ft)	2.3 - 3.7	3.2 (5)	
Secchi (m)	0.7 - 1.1	1.0 (5)	
Color (Pt-Co Units)	18 - 21	20 (3)	
Specific Conductance (µS/cm@25 C)	28 - 28	28 (1)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Longleat
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2003 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	47 (38 to 66)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	795 (510 to 1089)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Longleat trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.04$, p = 0.74), total nitrogen (TN No Trend, $R^2 = 0.71$, p = 0.07), chlorophyll (CHL No Trend, $R^2 = 0.04$, p = 0.74) and Secchi depth (Secchi No Trend, $R^2 = 0.34$, p = 0.30).

Florida LAKEWATCH Report for Mattie in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)	
Total Phosphorus (µg/L)	41 - 41	41 (1)	
Total Nitrogen (µg/L)	560 - 560	560 (1)	
Chlorophyll- uncorrected (µg/L)	26 - 26	26 (1)	
Secchi (ft)	1.5 - 1.5	1.5 (1)	
Secchi (m)	0.5 - 0.5	0.5 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Mattie
GNIS Number	
Latitude	30.3905
Longitude	-84.1457
Water Body Type	Lake
Surface Area (ha and acre)	1 ha or 3 acre
Period of Record (year)	1999 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (μ g/L, min. and max.)	41 (41 to 41)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	560 (560 to 560)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for McBride in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	15 - 38	26 (12)	
Total Nitrogen (µg/L)	438 - 760	545 (12)	
Chlorophyll- uncorrected (µg/L)	5 - 18	11 (12)	
Secchi (ft)	4.8 - 10.0	6.3 (12)	
Secchi (m)	1.5 - 3.0	1.9 (12)	
Color (Pt-Co Units)	9 - 16	11 (7)	
Specific Conductance (µS/cm@25 C)	21 - 27	25 (3)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	McBride
GNIS Number	286564
Latitude	30.5591
Longitude	-84.2294
Water Body Type	Lake
Surface Area (ha and acre)	64 ha or 159 acre
Period of Record (year)	1998 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	26 (15 to 38)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	545 (438 to 760)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake McBride trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.54$, p = 0.01), total nitrogen (TN No Trend, $R^2 = 0.02$, p = 0.65), chlorophyll (CHL Decreasing, $R^2 = 0.52$, p = 0.01) and Secchi depth (Secchi No Trend, $R^2 = 0.29$, p = 0.07).

Florida LAKEWATCH Report for McCord Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	103 - 103	103 (1)
Total Nitrogen (µg/L)	830 - 830	830 (1)
Chlorophyll- uncorrected (µg/L)	33 - 33	33 (1)
Secchi (ft)	3.8 - 3.8	3.8 (1)
Secchi (m)	1.2 - 1.2	1.2 (1)
Color (Pt-Co Units)	20 - 20	20 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	McCord Pond
GNIS Number	
Latitude	30.4742
Longitude	-84.2617
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2002 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	103 (103 to 103)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	830 (830 to 830)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Meginnis Arm in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	31 - 166	64 (3)
Total Nitrogen (µg/L)	347 - 966	503 (3)
Chlorophyll- uncorrected (µg/L)	10 - 49	18 (3)
Secchi (ft)	2.9 - 5.6	4.3 (3)
Secchi (m)	0.9 - 1.7	1.3 (3)
Color (Pt-Co Units)	13 - 33	20 (2)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Meginnis Arm
GNIS Number	306027
Latitude	30.4890
Longitude	-84.3052
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2002
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	64 (31 to 166)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	503 (347 to 966)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Minniehaha in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	9 - 51	16 (19)
Total Nitrogen (µg/L)	304 - 1175	594 (19)
Chlorophyll- uncorrected (μ g/L)	3 - 48	8 (19)
Secchi (ft)	1.6 - 4.7	2.8 (18)
Secchi (m)	0.5 - 1.4	0.8 (18)
Color (Pt-Co Units)	51 - 293	150 (6)
Specific Conductance (µS/cm@25 C)	25 - 34	29 (2)
Lake Classification	Colored	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Minniehaha
GNIS Number	305803
Latitude	30.4156
Longitude	-84.3510
Water Body Type	Lake
Surface Area (ha and acre)	8 ha or 19.8 acre
Period of Record (year)	1988 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	16 (9 to 51)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	594 (304 to 1175)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Minniehaha trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.16$, p = 0.09), total nitrogen (TN Increasing, $R^2 = 0.38$, p = 0.00), chlorophyll (CHL No Trend, $R^2 = 0.09$, p = 0.22) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.89).

Florida LAKEWATCH Report for Mitchell Arm in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	27 - 27	27 (1)
Total Nitrogen (µg/L)	612 - 612	612 (1)
Chlorophyll- uncorrected (µg/L)	30 - 30	30 (1)
Secchi (ft)	2.3 - 2.3	2.3 (1)
Secchi (m)	0.7 - 0.7	0.7 (1)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Mitchell Arm
GNIS Number	
Latitude	30.6244
Longitude	-84.2274
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	27 (27 to 27)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	612 (612 to 612)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Monkey Business in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	26 - 69	45 (16)
Total Nitrogen (µg/L)	564 - 1134	790 (16)
Chlorophyll- uncorrected (µg/L)	3 - 44	23 (16)
Secchi (ft)	1.9 - 6.5	2.7 (16)
Secchi (m)	0.6 - 2.0	0.8 (16)
Color (Pt-Co Units)	8 - 18	15 (7)
Specific Conductance (µS/cm@25 C)	72 - 72	72 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Monkey Business
GNIS Number	287064
Latitude	30.6082
Longitude	-84.2324
Water Body Type	Lake
Surface Area (ha and acre)	17 ha or 42 acre
Period of Record (year)	1993 to 2008
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	45 (26 to 69)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	790 (564 to 1134)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Monkey Business trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.00$, p = 0.99), total nitrogen (TN Increasing, $R^2 = 0.26$, p = 0.05), chlorophyll (CHL No Trend, $R^2 = 0.01$, p = 0.68) and Secchi depth (Secchi No Trend, $R^2 = 0.02$, p = 0.62).

Florida LAKEWATCH Report for Moore in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	5 - 9	7 (9)
Total Nitrogen (µg/L)	336 - 884	496 (9)
Chlorophyll- uncorrected (µg/L)	1 - 8	3 (9)
Secchi (ft)	4.0 - 7.3	5.5 (6)
Secchi (m)	1.2 - 2.2	1.7 (6)
Color (Pt-Co Units)	20 - 67	33 (5)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Moore
GNIS Number	306057
Latitude	30.3932
Longitude	-84.4050
Water Body Type	Lake
Surface Area (ha and acre)	27 ha or 67 acre
Period of Record (year)	1993 to 2005
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP1
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	7 (5 to 9)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	496 (336 to 884)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Moore trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.89$, p = 0.00), total nitrogen (TN No Trend, $R^2 = 0.27$, p = 0.15), chlorophyll (CHL No Trend, $R^2 = 0.23$, p = 0.19) and Secchi depth (Secchi No Trend, $R^2 = 0.04$, p = 0.69).

Florida LAKEWATCH Report for Moore 2 in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	41 - 46	44 (2)
Total Nitrogen (µg/L)	468 - 573	518 (2)
Chlorophyll- uncorrected (µg/L)	29 - 32	31 (2)
Secchi (ft)	5.4 - 5.7	5.5 (2)
Secchi (m)	1.6 - 1.7	1.7 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Moore 2
GNIS Number	287110
Latitude	30.5522
Longitude	-84.2636
Water Body Type	Lake
Surface Area (ha and acre)	18 ha or 44 acre
Period of Record (year)	1997 to 1998
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	44 (41 to 46)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	518 (468 to 573)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Moore Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	20 - 21	20 (3)	
Total Nitrogen (µg/L)	314 - 360	341 (3)	
Chlorophyll- uncorrected (µg/L)	4 - 8	6 (3)	
Secchi (ft)	10.0 - 12.3	10.9 (3)	
Secchi (m)	3.1 - 3.8	3.3 (3)	
Color (Pt-Co Units)	2 - 4	3 (3)	
Specific Conductance (µS/cm@25 C)	33 - 40	36 (3)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Moore Pond
GNIS Number	287110
Latitude	30.5522
Longitude	-84.2636
Water Body Type	Lake
Surface Area (ha and acre)	18 ha or 44 acre
Period of Record (year)	2017 to 2019
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (20 to 21)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	341 (314 to 360)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Munson in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	220 - 280	248 (2)	
Total Nitrogen (µg/L)	1835 - 1926	1880 (2)	
Chlorophyll- uncorrected (µg/L)	62 - 87	73 (2)	
Secchi (ft)	1.2 - 1.8	1.5 (2)	
Secchi (m)	0.4 - 0.5	0.4 (2)	
Color (Pt-Co Units)	39 - 40	39 (2)	
Specific Conductance (µS/cm@25 C)	103 - 103	103 (1)	
Lake Classification	Clear Hardwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Munson
GNIS Number	306093
Latitude	30.3672
Longitude	-84.3007
Water Body Type	Lake
Surface Area (ha and acre)	103 ha or 255 acre
Period of Record (year)	2006 to 2007
Lake Trophic Status (CHL)	Hypereutrophic
TP Zone	TP3
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	248 (220 to 280)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1880 (1835 to 1926)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Oakfair Farms Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	60 - 60	60 (1)	
Total Nitrogen (µg/L)	1412 - 1412	1412 (1)	
Chlorophyll- uncorrected (µg/L)	36 - 36	36 (1)	
Secchi (ft)	2.1 - 2.1	2.1 (1)	
Secchi (m)	0.6 - 0.6	0.6 (1)	
Color (Pt-Co Units)	31 - 31	31 (1)	
Specific Conductance (µS/cm@25 C)	53 - 53	53 (1)	
Lake Classification	Clear Softwater		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Oakfair Farms Pond
GNIS Number	
Latitude	30.4857
Longitude	-84.1218
Water Body Type	Lake
Surface Area (ha and acre)	ha or . acre
Period of Record (year)	2010 to 2010
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	60 (60 to 60)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1412 (1412 to 1412)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Orchard Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	10 - 10	10 (1)
Total Nitrogen (µg/L)	403 - 403	403 (1)
Chlorophyll- uncorrected (µg/L)	5 - 5	5 (1)
Secchi (ft)	-	(0)
Secchi (m)	-	(0)
Color (Pt-Co Units)	9 - 9	9 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Orchard Pond
GNIS Number	288231
Latitude	30.5786
Longitude	-84.3228
Water Body Type	Lake
Surface Area (ha and acre)	85 ha or 209 acre
Period of Record (year)	2003 to 2003
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	10 (10 to 10)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	403 (403 to 403)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.
Florida LAKEWATCH Report for Overstreet in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	7 - 35	16 (22)
Total Nitrogen (µg/L)	213 - 721	369 (22)
Chlorophyll- uncorrected (µg/L)	2 - 21	5 (23)
Secchi (ft)	4.7 - 18.0	10.4 (20)
Secchi (m)	1.4 - 5.5	3.2 (20)
Color (Pt-Co Units)	6 - 29	15 (11)
Specific Conductance (µS/cm@25 C)	13 - 25	21 (8)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Overstreet
GNIS Number	288304
Latitude	30.5284
Longitude	-84.2591
Water Body Type	Lake
Surface Area (ha and acre)	51 ha or 127 acre
Period of Record (year)	1991 to 2018
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	16 (7 to 35)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	369 (213 to 721)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Overstreet trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.29$, p = 0.01), total nitrogen (TN Increasing, $R^2 = 0.33$, p = 0.01), chlorophyll (CHL Increasing, $R^2 = 0.27$, p = 0.01) and Secchi depth (Secchi Decreasing, $R^2 = 0.35$, p = 0.01).

Florida LAKEWATCH Report for Petty Gulf in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	10 - 33	23 (28)
Total Nitrogen (µg/L)	257 - 706	492 (28)
Chlorophyll- uncorrected (µg/L)	4 - 22	10 (28)
Secchi (ft)	2.6 - 9.5	4.2 (28)
Secchi (m)	0.8 - 2.9	1.3 (28)
Color (Pt-Co Units)	7 - 30	12 (20)
Specific Conductance (µS/cm@25 C)	38 - 66	48 (14)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Petty Gulf
GNIS Number	288754
Latitude	30.5887
Longitude	-84.2309
Water Body Type	Lake
Surface Area (ha and acre)	11 ha or 28 acre
Period of Record (year)	1993 to 2022
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	23 (10 to 33)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	492 (257 to 706)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Petty Gulf trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.05$, p = 0.24), total nitrogen (TN No Trend, $R^2 = 0.02$, p = 0.44), chlorophyll (CHL No Trend, $R^2 = 0.12$, p = 0.07) and Secchi depth (Secchi No Trend, $R^2 = 0.08$, p = 0.14).

Florida LAKEWATCH Report for Pine Hill in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	15 - 37	20 (19)
Total Nitrogen (µg/L)	363 - 1346	501 (19)
Chlorophyll- uncorrected (µg/L)	2 - 32	6 (19)
Secchi (ft)	2.9 - 6.5	5.0 (18)
Secchi (m)	0.9 - 2.0	1.5 (18)
Color (Pt-Co Units)	8 - 28	11 (11)
Specific Conductance (µS/cm@25 C)	32 - 42	38 (5)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Pine Hill
GNIS Number	279127
Latitude	30.5856
Longitude	-84.2200
Water Body Type	Lake
Surface Area (ha and acre)	16 ha or 40 acre
Period of Record (year)	1993 to 2011
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	20 (15 to 37)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	501 (363 to 1346)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Pine Hill trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.45$, p = 0.00), total nitrogen (TN Increasing, $R^2 = 0.46$, p = 0.00), chlorophyll (CHL Increasing, $R^2 = 0.33$, p = 0.01) and Secchi depth (Secchi Decreasing, $R^2 = 0.52$, p = 0.00).

Florida LAKEWATCH Report for Piney Z in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	23 - 28	25 (2)
Total Nitrogen (µg/L)	447 - 507	476 (2)
Chlorophyll- uncorrected (µg/L)	4 - 10	6 (2)
Secchi (ft)	4.5 - 4.5	4.5 (1)
Secchi (m)	1.4 - 1.4	1.4 (1)
Color (Pt-Co Units)	22 - 22	22 (1)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Piney Z
GNIS Number	288970
Latitude	30.4404
Longitude	-84.1889
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2003
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	25 (23 to 28)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	476 (447 to 507)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Sheelin in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean	
	Annual Geometric Means	(Sampling years)	
Total Phosphorus (µg/L)	56 - 56	56 (1)	
Total Nitrogen (µg/L)	819 - 819	819 (1)	
Chlorophyll- uncorrected (μ g/L)	22 - 22	22 (1)	
Secchi (ft)	2.3 - 2.3	2.3 (1)	
Secchi (m)	0.7 - 0.7	0.7 (1)	
Color (Pt-Co Units)	-	(0)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in **bold** can be used for Nutrient Zone comparisons.

County	Leon
Name	Sheelin
GNIS Number	2437398
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 1999
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	56 (56 to 56)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	819 (819 to 819)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Shelly Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	38 - 82	61 (14)
Total Nitrogen (µg/L)	523 - 1071	817 (14)
Chlorophyll- uncorrected (µg/L)	11 - 56	26 (14)
Secchi (ft)	2.2 - 4.6	3.0 (14)
Secchi (m)	0.7 - 1.4	0.9 (14)
Color (Pt-Co Units)	8 - 27	13 (8)
Specific Conductance (µS/cm@25 C)	42 - 59	50 (2)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Shelly Pond
GNIS Number	
Latitude	30.5741
Longitude	-84.2714
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1995 to 2008
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	61 (38 to 82)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	817 (523 to 1071)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Shelly Pond trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.85$, p = 0.00), total nitrogen (TN Decreasing, $R^2 = 0.58$, p = 0.00), chlorophyll (CHL Decreasing, $R^2 = 0.54$, p = 0.00) and Secchi depth (Secchi Increasing, $R^2 = 0.78$, p = 0.00).

Florida LAKEWATCH Report for Silver in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	n's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department				· · · uu iuii	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	6 - 11	8 (8)
Total Nitrogen (µg/L)	247 - 358	304 (8)
Chlorophyll- uncorrected (µg/L)	2 - 6	3 (8)
Secchi (ft)	5.8 - 10.5	8.1 (7)
Secchi (m)	1.8 - 3.2	2.5 (7)
Color (Pt-Co Units)	4 - 21	10 (7)
Specific Conductance (µS/cm@25 C)	21 - 21	21 (1)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Silver
GNIS Number	306394
Latitude	30.4039
Longitude	-84.4040
Water Body Type	Lake
Surface Area (ha and acre)	5 ha or 13 acre
Period of Record (year)	2000 to 2007
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP1
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	8 (6 to 11)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	304 (247 to 358)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Silver trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Increasing, $R^2 = 0.76$, p = 0.00), total nitrogen (TN No Trend, $R^2 = 0.26$, p = 0.20), chlorophyll (CHL No Trend, $R^2 = 0.43$, p = 0.08) and Secchi depth (Secchi No Trend, $R^2 = 0.00$, p = 0.98).

Florida LAKEWATCH Report for Spring Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
Total Dhagehamig $(u \alpha/I)$		(Sampling years)
Total Phosphorus (µg/L)	330 - 330	338 (1)
Total Nitrogen (µg/L)	1403 - 1403	1403 (1)
Chlorophyll- uncorrected (µg/L)	140 - 140	140 (1)
Secchi (ft)	2.0 - 2.0	2.0 (1)
Secchi (m)	0.6 - 0.6	0.6 (1)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Spring Pond
GNIS Number	
Latitude	
Longitude	
Water Body Type	Lake
Surface Area (ha and acre)	2 ha or 5 acre
Period of Record (year)	2001 to 2001
Lake Trophic Status (CHL)	Hypereutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	338 (338 to 338)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	1403 (1403 to 1403)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Summerset in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	37 - 220	61 (14)
Total Nitrogen (µg/L)	509 - 2591	798 (14)
Chlorophyll- uncorrected (µg/L)	6 - 429	30 (14)
Secchi (ft)	1.6 - 5.0	2.9 (14)
Secchi (m)	0.5 - 1.5	0.9 (14)
Color (Pt-Co Units)	7 - 15	10 (9)
Specific Conductance (µS/cm@25 C)	43 - 72	58 (3)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Summerset
GNIS Number	
Latitude	30.5730
Longitude	-84.2641
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1995 to 2009
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	61 (37 to 220)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	798 (509 to 2591)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Summerset trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.41$, p = 0.01), total nitrogen (TN No Trend, $R^2 = 0.21$, p = 0.10), chlorophyll (CHL No Trend, $R^2 = 0.27$, p = 0.06) and Secchi depth (Secchi Increasing, $R^2 = 0.50$, p = 0.00).

Florida LAKEWATCH Report for Susan in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Table 1.	Florida	Department of	of Environmen	tal Protection	ı's Numeric	Nutrient	Criteria	for lakes.
I abic I.	I IVI Iuu	Department			1 5 I vuinci ic	1 vuti itilit	Critteria	ioi ianco.

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum	Grand Geometric Mean
	Annual Geometric Means	(Sampling years)
Total Phosphorus (µg/L)	34 - 213	98 (18)
Total Nitrogen (µg/L)	337 - 1890	757 (18)
Chlorophyll- uncorrected (µg/L)	5 - 94	21 (18)
Secchi (ft)	1.2 - 6.3	3.0 (18)
Secchi (m)	0.4 - 1.9	0.9 (18)
Color (Pt-Co Units)	16 - 38	23 (15)
Specific Conductance (µS/cm@25 C)	45 - 59	50 (9)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration (µg/L: min and max): Grand Geometric Means of all annual geometric means (µg/L) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Susan
GNIS Number	
Latitude	30.4869
Longitude	-84.3292
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2018
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	98 (34 to 213)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	757 (337 to 1890)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Susan trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.03$, p = 0.48), total nitrogen (TN No Trend, $R^2 = 0.00$, p = 0.98), chlorophyll (CHL No Trend, $R^2 = 0.10$, p = 0.19) and Secchi depth (Secchi Increasing, $R^2 = 0.46$, p = 0.00).

Florida LAKEWATCH Report for Tom John in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 μg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	9 - 64	37 (22)
Total Nitrogen (µg/L)	493 - 1235	820 (22)
Chlorophyll- uncorrected (µg/L)	4 - 36	16 (22)
Secchi (ft)	2.7 - 7.3	4.2 (22)
Secchi (m)	0.8 - 2.2	1.3 (22)
Color (Pt-Co Units)	9 - 29	19 (16)
Specific Conductance (µS/cm@25 C)	43 - 73	55 (10)
Lake Classification	Clear Softwater	

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Tom John
GNIS Number	292334
Latitude	30.5444
Longitude	-84.2129
Water Body Type	Lake
Surface Area (ha and acre)	6 ha or 15 acre
Period of Record (year)	1997 to 2021
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	37 (9 to 64)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	820 (493 to 1235)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Tom John trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP Decreasing, $R^2 = 0.66$, p = 0.00), total nitrogen (TN Decreasing, $R^2 = 0.29$, p = 0.01), chlorophyll (CHL Decreasing, $R^2 = 0.52$, p = 0.00) and Secchi depth (Secchi Increasing, $R^2 = 0.61$, p = 0.00).

Florida LAKEWATCH Report for Trout Pond in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 μg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	6 - 16	10 (9)
Total Nitrogen (µg/L)	273 - 778	429 (9)
Chlorophyll- uncorrected (µg/L)	2 - 10	6 (9)
Secchi (ft)	8.5 - 8.5	8.5 (1)
Secchi (m)	2.6 - 2.6	2.6 (1)
Color (Pt-Co Units)	26 - 31	29 (4)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Trout Pond
GNIS Number	306351
Latitude	30.3344
Longitude	-84.3850
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1993 to 2004
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP1
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	10 (6 to 16)
TN Zone	TN2
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	429 (273 to 778)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration

Figure 2. Lake Trout Pond trend plots of year by average. The R^2 value indicates the strength of the relations (ranges from 0.0 to 1.0; higher the R^2 the stronger the relation) and the p value indicates if the relation is significant (p < 0.05 is significant). Total phosphorus (TP No Trend, $R^2 = 0.35$, p = 0.09), total nitrogen (TN No Trend, $R^2 = 0.34$, p = 0.10), chlorophyll (CHL Increasing, $R^2 = 0.85$, p = 0.00) and Secchi depth (Secchi No Trend, $R^2 =$, p =).

Florida LAKEWATCH Report for Weeks in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **vears of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- Color (Pt-Co Units): LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum calculated		Maximum calculated	
Mean Lake Color and Long-	Geometric	numeric int	erpretation	numeric in	terpretation
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 µg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)
Total Phosphorus (µg/L)	12 - 28	18 (2)
Total Nitrogen (µg/L)	639 - 1245	892 (2)
Chlorophyll- uncorrected (µg/L)	7 - 33	15 (2)
Secchi (ft)	2.4 - 5.7	3.7 (2)
Secchi (m)	0.7 - 1.7	1.1 (2)
Color (Pt-Co Units)	-	(0)
Specific Conductance (µS/cm@25 C)	-	(0)
Lake Classification		

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Weeks
GNIS Number	
Latitude	30.3736
Longitude	-84.1395
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	1999 to 2000
Lake Trophic Status (CHL)	Eutrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	18 (12 to 28)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	892 (639 to 1245)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.

Florida LAKEWATCH Report for Windermere in Leon County Using Data Downloaded 12/9/2022

Introduction for Lakes

This report summarizes data collected on systems that have been part of the LAKEWATCH program. Data are from the period of record for individual systems. Part one allows the comparison of data with Florida Department of Environmental Protection's Numeric Nutrient Criteria. Part two allows a comparison of the long-term mean nutrient concentrations with nutrient zone concentrations published by LAKEWATCH staff (Bachmann et al. 2012; https://lakewatch.ifas.ufl.edu/resources/bibliography/). Finally, this report examines data for long-term trends that may be occurring in individual systems but only for systems with <u>five or more</u> **years of data.** Step by step instructions on how to use the data tables are provided on page 4 of this report.

Florida Department of Environmental Protection (FDEP) Nutrient Criteria for Lakes (Table 1)

For lakes, the numeric interpretations of the nutrient criterion in paragraph 62-302.530(47)(b), F.A.C., based on chlorophyll are shown in Table 1. The applicable interpretations for TN and TP will vary on an annual basis, depending on the availability and concentration of chlorophyll data for the lake. The numeric interpretations for TN, TP, and chlorophyll shall not be exceeded more than once in any consecutive three year period.

a. If annual geometric mean chlorophyll does not exceed the chlorophyll value for one of three lake classification groups listed in the table below, then the TN and TP numeric interpretations for that calendar year shall be the annual geometric means of the maximum calculated numeric interpretation in Table 1.

b. If there are insufficient data to calculate the annual geometric mean chlorophyll for a given year or the annual geometric mean chlorophyll exceeds the values in Table 1 for the correct lake classification group, then the applicable numeric interpretations for TN and TP shall be the minimum values in Table 1.

- Total Phosphorus (µg/L): Nutrient most often limiting growth of plant/algae.
- Total Nitrogen (µg/L): Nutrient needed for aquatic plant/algae growth but only limiting when nitrogen to phosphorus ratios are generally less than 10 (by mass).
- Chlorophyll-uncorrected (µg/L): Chlorophyll concentrations are used to measure relative abundances of open water algae.
- Secchi (ft), Secchi (m): Secchi measurements are estimates of water clarity.
- **Color (Pt-Co Units):** LAKEWATCH measures true color, which is the color of the water after particles have been filtered out.
- Specific Conductance (µS/cm@25°C): Measurement of the ability of water to conduct electricity and can be used to estimate the amount of dissolved materials in water.
- Lake Classification: Numeric nutrient criteria for Florida require that lakes must first be classified into one of three group based on color and alkalinity or specific conductance; colored lakes (color greater than 40 Pt-Co units), clear soft water lakes (color less than or equal to 40 Pt-Co units and alkalinity less than or equal to 20 mg/L as CaCO₃ or specific conductance less than or equal to 100 µs/cm @25 C), and clear hard water lakes (color less than 40 Pt-Co units and alkalinity greater than 20 mg/L as CaCO₃ or specific conductance greater 100 µS/cm @ 25 C).

Long Term Geometric	Annual	Minimum	calculated	Maximum	calculated
Mean Lake Color and Long-	Geometric	numeric interpretation		numeric interpretation	
Term Geometric Mean	Mean	Annual	Annual	Annual	Annual
Color, Alkalinity and	Chlorophyll-	Geometric	Geometric	Geometric	Geometric
Specific Conductance	corrected	Mean Total	Mean Total	Mean Total	Mean Total
		Phosphorus	Nitrogen	Phosphorus	Nitrogen
> 40 Platinum Cobalt Units	20 µg/L	50 µg/L	1270 μg/L	160 μg/L ¹	2230 µg/L
Colored Lakes					
\leq 40 Platinum Cobalt Units					
and $> 20 \text{ mg/L CaCO}_3$	20 µg/L	30 µg/L	1050 μg/L	90 μg/L	1910 µg/L
or					
>100 µS/cm@25 C					
Clear Hard Water Lakes					
\leq 40 Platinum Cobalt Units					
and $\leq 20 \text{ mg/L CaCO}_3$	6 µg/L	10 µg/L	510	30 µg/L	930 μg/L
or			μg/L		
< 100 µS/cm@25 C					
Clear Soft Water Lakes					

For the purpose of subparagraph 62-302.531(2)(b)1., F.A.C., color shall be assessed as true color and shall be free from turbidity. Lake color and alkalinity shall be the long-term geometric mean, based on a minimum of ten data points over at least three years with at least one data point in each year. If insufficient alkalinity data are available, long-term geometric mean specific conductance values shall be used, with a value of <100 μ S/cm@25 C used to estimate the mg/L CaCO₃ alkalinity concentration until such time that alkalinity data are available.

Parameter	Minimum and Maximum Annual Geometric Means	Grand Geometric Mean (Sampling years)	
Total Phosphorus (µg/L)	32 - 46	38 (2)	
Total Nitrogen (µg/L)	371 - 520	439 (2)	
Chlorophyll- uncorrected (µg/L)	4 - 11	7 (2)	
Secchi (ft)	3.0 - 4.0	3.5 (2)	
Secchi (m)	0.9 - 1.2	1.1 (2)	
Color (Pt-Co Units)	18 - 18	18 (1)	
Specific Conductance (µS/cm@25 C)	-	(0)	
Lake Classification			

The long-term data summary will include the following parameters listed with a definition after each one:

- **County:** Name of county in which the lake resides.
- Name: Lake name that LAKEWATCH uses for the system.
- GNIS Number: Number created by USGS's Geographic Names Information System.
- Latitude and Longitude: Coordinates identifying the exact location of station 1 for each system.
- Water Body Type: Four different types of systems; lakes, estuaries, river/streams and springs.
- Surface Area (ha and acre): LAKEWATCH lists the surface area of a lake if it is available.
- Mean Depth (m and ft): This mean depth is calculated from multiple depth finder transects across a lake that LAKEWATCH uses for estimating plant abundances.
- **Period of Record (year):** Years a lake has been in the LAKEWATCH program.
- **TP Zone and TN Zone:** Nutrient zones defined by Bachmann et al (2012).
- Long-Term TP and TN Geometric Mean Concentration ($\mu g/L$: min and max): Grand Geometric Means of all annual geometric means ($\mu g/L$) with minimum and maximum annual geometric means.
- Lake Trophic Status (CHL): Tropic state classification using the long-term chlorophyll average.

Table 3. Base File Data, long-term nutrient grand geometric means and Nutrient Zone classification listing the 90th percentile concentrations in Figure 1. Values in bold can be used for Nutrient Zone comparisons.

County	Leon
Name	Windermere
GNIS Number	
Latitude	30.4160
Longitude	-84.1330
Water Body Type	Lake
Surface Area (ha and acre)	. ha or . acre
Period of Record (year)	2000 to 2001
Lake Trophic Status (CHL)	Mesotrophic
TP Zone	TP4
Grand TP Geometric Mean Concentration (µg/L, min. and max.)	38 (32 to 46)
TN Zone	TN3
Grand TN Geometric Mean Concentration (µg/L, min. and max.)	439 (371 to 520)

- 1. Identify your lake's *Lake Classification* in Table 2 (Colored, Clear Hard Water, or Clear Soft Water) (if no classification is listed then there is not enough data available to classify your lake).
 - a. The *Lake Classification* tells you which row to use in Table 1.
- 2. Identify your waterbody's Grand Geometric Mean Chlorophyll-uncorrected in Table 2.
 - a. Compare this number to the Annual Geometric Mean Chlorophyll-corrected (2nd column) in Table 1.
 - b. If your lake's Chlorophyll-uncorrected concentration is greater than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Minimum calculated numeric interpretation* columns.
 - c. If your lake's *Chlorophyll-uncorrected* concentration is less than the *Annual Geometric Mean Chlorophyll-corrected* concentration use the *Maximum calculated numeric interpretation* columns.
- 3. Identify your lake's Total Phosphorus and Total Nitrogen *Grand Geometric Mean* concentration in Table 2 and compare them to the appropriate *Annual Geometric Mean Total Phosphorus* and *Annual Geometric Mean Total Nitrogen* values in Table 1.
- 4. If your lake's concentrations from Table 2 are greater than FDEP's NNC values from Table 1, your lake may be considered impaired. If they are below, it may be considered unimpaired.

Nutrient Zones and "Natural Background"

Administrative code definitions 62-302.200 (19): "Natural background" shall mean the condition of waters in the absence of man-induced alterations based on the best scientific information available to the Department. The establishment of natural background for an altered waterbody may be based upon a similar unaltered waterbody, historical pre-alteration data, paleolimnological examination of sediment cores, or examination of geology and soils. When determining natural background conditions for a lake, the lake's location and regional characteristics as described and depicted in the U.S. Environmental Protection Agency document titled Lake Regions of Florida (EPA/R-97/127, dated 1997, U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Corvallis, OR) (http://www.flrules.org/Gateway/reference.asp?No=Ref-06267), which is incorporated by reference herein, shall also be considered. The lake regions in this document are grouped Nutrient Zones according to ambient total phosphorus and total nitrogen concentrations listed in Table 1 found in Bachmann, R. W., Bigham D. L., Hoyer M. V., Canfield D. E, Jr. 2012. A strategy for establishing numeric nutrient criteria for Florida lakes. Lake Reservoir Management. 28:84-92.

- 1. Identify your lake's TP Zone in Table 3.
 - a. Locate this TP Zone (left map) and its corresponding nutrient concentration in Figure 1.
- 2. Locate your lake's Long-Term Grand Geometric Mean TP Concentration value in Table 3.
- 3. Compare your lake's Long-Term Grand Geometric Mean TP Concentration from Table 3 to the appropriate TP Zone nutrient concentration from Figure 1.
 - a. If your lake's Long-Term Grand Geometric Mean TP Concentration number is higher than the TP zone nutrient concentration, your lake's nutrient concentration is above "Natural Background".
 - b. If your lake's Long-Term Grand Geometric Mean TP Concentration number is lower than the TP zone nutrient concentration, your lake's nutrient concentration is within "Natural Background".
- 4. Repeat these same steps with the TN Zone and Long-term Grand Geometric Mean TN Concentration.