
A Beginner's Guide to Water Management —

Symbols, Abbreviations & Conversion Factors

Information Circular 105

Florida LAKEWATCH

Department of Fisheries and Aquatic Sciences
Institute of Food and Agricultural Sciences
University of Florida
Gainesville, Florida

April 2002 2nd Edition

Acknowledgment

Many thanks to Dr. Roger Bachmann and Dr. Chuck Cichra at the University of Florida, for their editorial assistance.

This publication was produced by:

Florida LAKEWATCH

University of Florida / Institute of Food and Agricultural Sciences Department of Fisheries and Aquatic Sciences 7922 NW 71st Street Gainesville, FL 32653-3071

E-mail: lakewat@ufl.edu

Web Address: http://lakewatch.ifas.ufl.edu

Copies of this document are available for download from the Florida LAKEWATCH Web site:

http://lakewatch.ifas.ufl.edu/LWcirc.html

As always, we welcome your questions or comments.

A Beginner's Guide to Water Management —

Symbols, Abbreviations & Conversion Factors

Information Circular 105

Florida LAKEWATCH

Department of Fisheries and Aquatic Sciences
Institute of Food and Agricultural Sciences
University of Florida
Gainesville, Florida

April 2002

Before reading this circular, we encourage you to read the four circulars that precede it:

A Beginner's Guide to Water Management – The ABCs (Circular 101)

A Beginner's Guide to Water Management – Nutrients (Circular 102)

A Beginner's Guide to Water Management – Water Clarity (Circular 103)

A Beginner's Guide to Water Management – Lake Morphometry (Circular 104)

Copies of any of these publications can be obtained by contacting the Florida LAKEWATCH office at 1-800-LAKEWATCH (1-800-525-3928)

They can also be downloaded for free from the Florida LAKEWATCH Web site:

http://lakewatch.ifas.ufl.edu/LWcirc.html

or from the UF/IFAS Electronic Document Information Source (EDIS):

http://edis.ifas.ufl.edu

Prologue

ommunication is the basis for most human interactions. It could even be said that societies cease to function when they lose the ability to communicate. Because of this need to express ideas and exchange information, people around the world have gone to great lengths to develop languages for use within a common geographic region or culture. Given the diversity of the human race, some of these languages are vastly different. Even within a single language there are dialects or slang expressions that can hinder communication.

Many cultures have tried to solve this dilemma by developing dictionaries, standard abbreviations and symbols — an attempt to share their language with those who are willing to learn. The scientific community is no different as it has attempted to resolve communication difficulties by developing glossaries for its numerous disciplines (e.g., biology, chemistry, physics, zoology, etc.). Such glossaries can usually be found within any textbook or journal relating to a specific discipline and they provide a good starting point. Scientists have also taken things one step further by developing an International System (SI) for standardizing scientific and mathematical symbols, abbreviations, and units of measure to be used around the world. While this system has certainly helped reduce communication problems within the general scientific community, problems still occur.

For example, even though the U.S. scientific community adopted the metric system (the basis of the SI system) many years ago, some people still need conversion tables to insure their measurements are properly translated into the metric system. Failure to do this can cause problems. A case in point is the U.S. Mars Climate Orbiter that missed its target in September of 2000 and burned up deep in Mars' atmosphere due to a mistake in measurement units within the engineering process. Contractors building the spacecraft specified the engine's thrust in English units (i.e., pounds), while navigators planning the orbiter's flight path assumed the units were in metric units of newtons. The oversight resulted in the loss of the \$125 million orbiter. As they say, "old habits die slowly" and many of the individuals that grew up with the English system are obviously still adjusting to the metric system.

However, aside from the English vs. metric quandary, scientists will probably always continue to face their

greatest communications challenge: communicating with non-scientists. For the lay public, language used by scientists remains shrouded in mystery. Unfamiliar words often convey unintended meanings, or in many instances, no meaning at all. Even the most intelligent or well-educated listeners have difficulty understanding scientific jargon, especially when the language is not part of their everyday experience.

Communication is further complicated by the fact that there are a multitude of distinct disciplines within the scientific community itself: some scientists study the universe, some study the human body, while others

may study the natural world. Even in closely related subjects such as limnology or oceanography, researchers tend to gravitate toward highly specialized topics such as the biological, chemical or physical aspects of freshwater and/or marine environments. As a result, scientists essentially end up developing their own customized language that only their immediate peers understand. This is unfortunate because in the long run, much of the research being done these days can potentially have an impact on our daily lives.

So what can we do to bridge this gap?
For starters, it's imperative that the public not be intimidated by science and to remember that science is, after all, a human endeavor. Although scientists may be highly trained individuals,

they make mistakes too and contrary to popular belief, they don't always have the answers. Those of us with LAKEWATCH are of the opinion that the best scientists are those who know how to say "I don't know, but I'll do my best to find out."

Secondly, continue asking questions! This can be a difficult assignment as many people are afraid to ask questions for fear that it will show their ignorance. All of us need to be reminded that (1) there is no such thing as a dumb question, and (2) this problem is not just limited to the lay public; scientists are afraid to ask questions too. Such fears prevent us all from learning something new.

As our LAKEWATCH team continues to help translate the scientific concepts and ideas related to water management, we hope that you'll be patient if any information should happen to get lost in the translation. Even the best translators make mistakes in interpretation — evidence of just how imperfect language can be and how important it is for us all to keep trying.

Fishery scientists often measure the length and weight of individual fish to assess the "health" of a fish population.

Introduction

Plorida LAKEWATCH is committed to helping non-scientists become familiar with the language used by scientists, particularly the terminology related to freshwater and marine sciences. This circular and the four others that precede it are evidence of that commitment.

The first in the series, A Beginner's Guide to Water Management – The ABCs (Circular 101), was designed to help readers become acquainted with terminology and management concepts used by limnologists and water management professionals.

The circular you have in hand, the fifth in our series, is a sequel of sorts to Circular 101 as it provides the tools for interpreting and/or translating units of measure, conversion factors, symbols, and abbreviations used by scientists in the U.S. and on an international basis.

Much of this information is typically only available by searching numerous publications, but we have assembled it here under one cover for quick reference. Emphasis is placed on the International System (SI) so that readers can become familiar with the metric system and perhaps even begin to use it in their everyday activities. It should be noted that, while we tried to make this booklet as comprehensive as possible, the information provided is not totally inclusive. Therefore, if you encounter something you don't understand or if you need more information about any of the material, feel free to contact Florida LAKEWATCH for assistance.

It is hoped that continued use of and exposure to the SI system will ultimately reduce problems related to metric conversions and enhance the communication of scientific ideas and concepts.

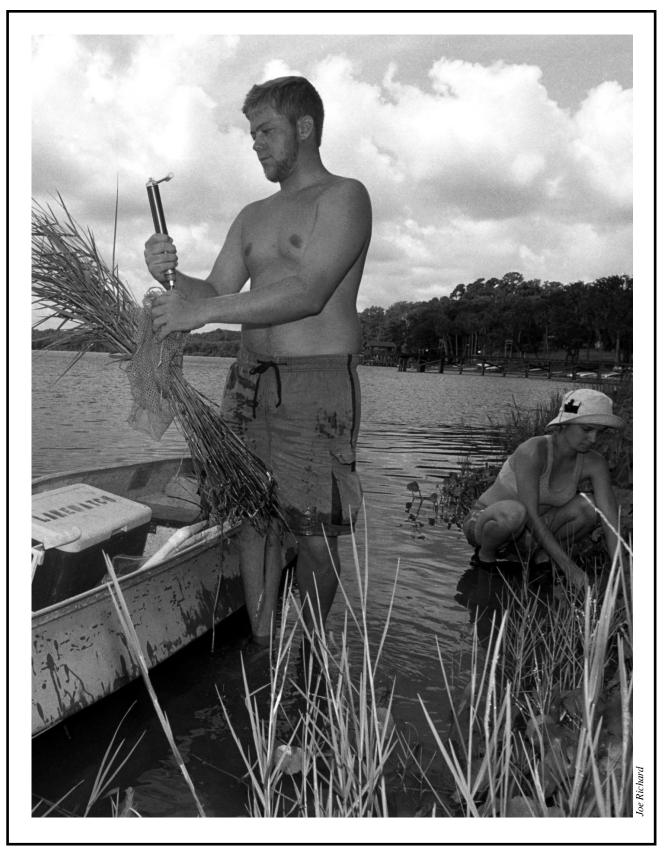
Included in this circular:

Part I Common SI Prefixes

Part II Commonly Used Abbreviations and Symbols

Part III Commonly Used Metric and English Conversion Factors

Listed in units of Area, Concentration, Length, Mass, Power, Pressure, Temperature, and Volume.


Part IV A Glossary of Commonly Used Metric and English Conversion Factors

Part V Elements and Atomic Weights

Part VI Interpreting Water Chemistry Formulas and Calculating Molecular Weights

Part VII Different Ways of Expressing a Chemical Compound

Part VIII Using Atomic Weights to Compare Different Measures of Concentration

UF students Eric Porak and Amber Paxton collect and weigh aquatic plants to determine the aquatic plant biomass (kilogram wet weight/m²) of emergent plants at Lake Wauberg in Gainesville. Florida LAKEWATCH staff, students, and volunteers work together each summer to collect this information on a number of lakes throughout the state.

Part I Common SI Prefixes

While reading scientific literature, you may have noticed that many of the words used to indicate the size or quantity of things (i.e, units of measure) are often compound words. Deciphering the meaning of these words is easy if you remember that the first part of the word, the prefix, often denotes a numerical value and the second part indicates the actual unit of measure. For example, the term *milligram* can be translated by defining the two parts of the word separately: if the prefix *milli* means one-thousandth, then a milligram is one-thousandth of a gram.

Listed below are some of the common prefixes and their corresponding symbols used by scientists. Notice that the multiplying factor¹ for each prefix is also provided along with the appropriate scientific notation. It's important to be familiar with these factors as they are often used in scientific literature and/or mathematical text. For example, if you should see the number "10" depicted with an exponent² while reading a scientific journal, graph or chart, you'll be able to translate that number into its numerical equivalent by using the information provided below.

Prefix Symbol Multip		Multiplying Fa	olying Factor	
giga	G	1,000,000,000	=	10^{9}
mega	M	1,000,000	=	10^{6}
kilo	k	1,000	=	10^{3}
hecto	h	100	=	10^{2}
deca	da	10	=	10^{1}
(no prefix for the number 1)		1	=	10^{0}
deci	d	0.1	=	10^{-1}
centi	c	0.01	=	10^{-2}
milli	m	0.001	=	10^{-3}
micro	μ	0.000,001	=	10^{-6}
nano	n	0.000,000,001	=	10^{-9}
pico	p	0.000,000,000,001	=	10-12

¹ The multiplying factor for the prefix "mega" is **1,000,000**. Therefore, the scientific notation equivalent for 1,000,000 is expressed as **10**6.

² Exponent – the small number or symbol placed above and to the right of the base number (e.g., 10¹).

Part II Commonly Used Abbreviations and Symbols

he use of abbreviations and symbols in scientific writing reduces the number of letters and words needed thus making manuscripts less cumbersome for both the writer and the reader. It can also shorten the actual length of an article, saving paper. With this in mind, we've provided the following list of commonly used symbols and abbreviations within both the metric and English systems of measurement. While it's not necessary to learn all of these, familiarity with some of them can certainly help, particularly those related to water management. Consider this a cheat sheet to assist you in your efforts to become better acquainted with the wild and wonderful world of chemistry and water management.

Commonly Used Abbreviations and Symbols

Abbreviation	Definition	Abbreviation	Definition
a	annum (year)	$ m^2$	square meter
acre-ft	acre foot	m^3	cubic meter
a.i.	active ingredient	mb	millibar
atm	atmosphere	mg	milligram
avdp	avoirdupois	mi	mile (statute)
C	Celsius	mi ²	square mile
cal	calorie	min	minute
cc	cubic centimeter	mm	millimeter
cm	centimeter	μg	microgram
cm ²	square centimeter	μg/L	microgram per liter
cm ³	cubic centimeter	μg · L-1	microgram per liter
d	day	μmho·cm ⁻¹	micromho per centimeter
diam	diameter	μm	micrometer
doz	dozen	μM	micromole
F	Fahrenheit	$\mu M \cdot L^{-1}$	micromole per liter
fm	fathom	μmol/L	micromole per liter
ft	foot	μS·cm ⁻¹	microsiemen per centimeter
ft^2	square foot	mg/m ³	milligram per cubic meter
ft ³	cubic foot	mg⋅ m ⁻³	milligram per cubic meter
g	gram	mgd	million gallons per day
gal	gallon (US)	mg/L	milligram per liter
g-cal	gram calorie	mg·L ⁻¹	milligram per liter
gpm	gallons per minute	ml	milliliter
grains/gal	grains per U.S. gallon	mol/L	mole per liter
h	hour	mol· L-1	mole per liter
ha	hectare	ng	nanogram
hp	horsepower	OZ	ounce
in	inch	ppb	part per billion
in ²	square inch	ppm	part per million
in ³	cubic inch	ppt	part per thousand
j	joule	psi	pound per square inch
kcal	kilocalorie	pt	pint
kg	kilogram	qt	quart
km	kilometer	S	second
km ²	square kilometer	t	tonne (metric)
kw	kilowatt	ton	ton (English)
L	liter	W	watt
lb	pound	yr	year
log	logarithm (common)	yd	yard
ln	logarithm (natural)	yd^2	square yard
\log_{e}	logarithm (natural)	yd ³	cubic yard
m	meter	I	

Part III Commonly Used Metric and English Conversion Factors

s you probably know by now, there are a multitude of ways to measure things and not everyone uses the same unit of measure. That's one reason why the scientific community developed an International System (SI) for standardizing scientific and mathematical symbols, abbreviations and units of measure. While this system has helped reduce confusion within the scientific community and even some portions of the general public, problems still occur as not everyone has universally adopted the SI system. As a result, conversions often need to be done so that measurements are properly translated and interpreted — an important step toward insuring that within the communication process, everyone is "on the same page."

For this reason, conversion factors are provided in the following section so the reader may convert from metric to English or vice versa. We've organized the information under units of measure that are commonly applied within the water management arena (i.e., Area, Concentration, Length, Mass, Power, Pressure, Temperature and Volume). For a more comprehensive listing, see Part IV A Glossary of Common Metric and English Conversion Factors.

Florida LAKEWATCH volunteer Susan Wright carefully measures water volume in a graduated cylinder before pouring it into the filtration system to the right of the cylinder. This water volume measurement must be accurately measured and recorded.

Units of AREA

To convert...

square centimeters (cm²)	to	multiply by
square centimeters	square feet	0.001076
square centimeters	square inches	0.155
square centimeters	square meters	0.0001

square meters (m²)	to	multiply by
square meters square meters square meters square meters square meters	acres square centimeters square feet square miles square yards	0.0002471 10,000 10.76 0.0000003861 1.196

square kilometers (km²)	to	multiply by
square kilometers	acres	247.1
square kilometers	square feet	10,760,000
square kilometers	square miles	0.3861

hectares hectares	acres square feet	2.471 107,639
hectares	square meters	10,000

ENGLISH conversions

Units of AREA

To convert...

square inches (in²)	to	multiply by
square inches	square centimeters	6.452
square inches	square meters	0.0006452
square inches	square feet	0.00694

square feet (ft²)	to	multiply by
square feet	acres	0.00002296
square feet	square centimeters	929
square feet	square meters	0.0929

square yards (yd²)	to	multiply by
square yards	square meters	0.8361
square yards	hectares	0.00008361
square yards	acres	0.000207

square miles (mi²)	to	multiply by
square miles square miles square miles square miles	acres square kilometers hectares square meters	640 2.59 259 2,590,000

acres (acre)	to	multiply by
acres	hectares	0.40470
acres	square meters	4,047
acres	square feet	43,560
acres	square yards	4,840

Units of CONCENTRATION

To convert...

milligrams / liter (mg/L or mg · L-1)	to	multiply by
milligrams/liter	parts/million	1
milligrams/liter	grains/U.S. gallon	0.0584
milligrams/liter	micrograms/liter	1,000
milligrams/liter	milligrams/cubic meter	1,000

milligrams / cubic meter (mg/m³ or mg·m³)	to	multiply by
milligrams/cubic meter	micrograms/liter	1
milligrams/cubic meter	milligrams/liter	0.001

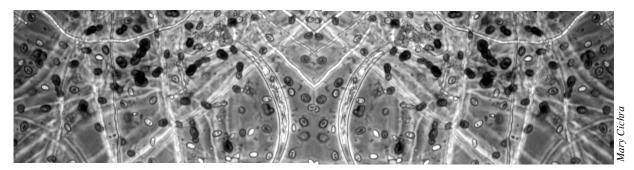
micrograms / liter (μg/L or μg· L ⁻¹)	to	multiply by
micrograms/liter	parts/billion	1
micrograms/liter	milligrams/cubic meter	1
micrograms/liter	milligrams/liter	0.001
micrograms/liter	ppm	0.001

ou may notice in our tables (above) that a concentration of milligrams per liter can be abbreviated either as mg/L or as mg· L-1. Both abbreviations are considered to be equivalent because of the algebraic property $L^{-1} = 1/L$.

This means that multiplying by L^{-1} is the same as dividing by L.

In the first abbreviation, the symbols **mg/L** mean that we are dividing the weight of a substance (**mg**) by the volume in which it is dissolved (one liter or **L**).

$$mg \times \frac{1}{L}$$


In the second abbreviation, $mg \times \frac{1}{L}$ we are multiplying the weight of a substance (**mg**), times one divided by the volume in which it is dissolved (one liter or **L**).

Note: Following the same rules, milligrams per cubic meter could be expressed either as mg/m^3 or as $mg \cdot m^{-3}$.

While reading scientific publications, you will most likely see negative exponents used rather than the slashes as this is currently the accepted method of notation. This is done to avoid confusion in calculations when there are multiple divisions in a combined unit of measurement. For example, let's say that we are keeping track of the weight of fish harvested from a lake over several years. If we wanted to compare our fish weight data with the weights of fish harvested from other lakes of different sizes, we would need to calculate all the harvest data in terms of kilograms of fish per hectare per year. This could be noted as kg/ha/yr. However, the preferred way to abbreviate the unit would be kg · ha-1 · yr-1.

ENGLISH conversions

Units of CONCENTRATION

To convert...

parts per billion (ppb)	to	multiply by
parts/billion	micrograms/liter	1
parts/billion	milligrams/liter	0.001
parts/billion	parts/million	0.001
1 ,	1 ,	

parts per million (ppm)	to	multiply by
parts/million parts/million parts/million parts/million parts/million	grains/U. S. gallon parts/thousand micrograms/liter parts/billion milligrams/liter	0.0584 0.001 1,000 1,000

parts per thousand (ppt)	to	multiply by
parts/thousand	parts/billion	1,000,000
parts/thousand	parts/million	1,000
parts/thousand	milligrams/liter	1,000
parts/thousand	micrograms/liter	1,000,000

moles per liter (mol/L or mol L-1 or M/L)	to	multiply by
moles/liter	parts/million	(molecular weight) x 1,000
moles/liter	milligrams/liter	(molecular weight) x 1,000

micromoles per liter (μmol/L or μmol L-1 or μM/L)	to	multiply by
micromoles/liter	parts/million	(molecular weight) x 0.001
micromoles/liter	milligrams/liter	(molecular weight) x 0.001
micromoles/liter	micrograms/liter	(molecular weight) x 1

Units of LENGTH

millimeters (mm)	to	multiply by	
millimeters millimeters millimeters millimeters millimeters	feet inches microns centimeters meters	0.003281 0.03937 1,000 0.1 0.001	

centimeters (cm)	to	multiply by	
centimeters	feet	0.03281	
centimeters	inches	0.3937	
centimeters	meters	0.01	

meters (m)	to	multiply by
meters meters meters	feet inches miles (statute)*	3.281 39.37 0.0006214
meters meters meters meters	yards millimeters centimeters kilometers	1.094 1,000 100 0.001

kilometers (km)	to	multiply by
kilometers	feet	3,281
kilometers	miles (statute)	0.6214
kilometers	centimeters	100,000
kilometers	meters	1,000

^{*} Statute mile – a unit of distance used on land in the English speaking countries equal to 5,280 feet or 1,760 yards.

ENGLISH conversions

Units of LENGTH

inches (in)	to	multiply by
inches	centimeters	2.54
inches	meters	0.0254
inches	fathoms	0.01389
inches	yards	0.0278

feet (ft)	to	multiply by
feet	centimeters	30.48
feet	meters	0.3048
feet	kilometers	0.0003048
feet	inches	12
feet	fathoms	0.1667
feet	miles (statute)*	0.0001893

yards (yd)	to	multiply by
yards	centimeters	91.44
yards	meters	0.9144
yards	kilometers	0.0009144
yards	feet	3
yards	fathoms	0.5

fathoms (fm)	to	multiply by	
fathoms	inches	72	
fathoms	feet	6	
fathoms	yards	2	

miles (mi)	to	multiply by
miles (statute)*	kilometers	1.609
miles (statute)	meters	1,609
miles (statute)	miles (nautical)**	0.8684
miles (statute)	feet	5,280
miles (statute)	yards	1,760

^{*} Statute mile – a unit of distance used on land in the English speaking countries equal to 5,280 feet or 1,760 yards.

^{**} Nautical mile – officially fixed in the United States at 6,080.20 feet and in Great Britain at 6,080 feet.

Units of MASS

To convert...

kilograms (kg)	to	multiply by
kilograms	ounces (troy)*	32.15
kilograms	pounds (avoirdupois)**	2.205
kilograms	tons (short)***	0.0011
kilograms	tons (<i>long</i>)****	0.000984
kilograms	grams	1,000

grams (g)	to	multiply by
grams grams grams grams grams grams	grains ounces (avoirdupois) ounces (troy) pounds (avoirdupois) milligrams micrograms	15.43 0.03527 0.03215 0.002205 1,000 1,000,000
grams	kilograms	0.001

milligrams (mg)	to	multiply by
milligrams milligrams milligrams milligrams milligrams milligrams	grains ounces (avoirdupois) ounces (troy) pounds grams micrograms	0.01543 0.00003527 0.00003215 0.000002205 0.001 1,000

micrograms (μg)	to	multiply by
micrograms	pounds	0.000000002205
micrograms	milligrams	0.001
micrograms	grams	0.000001

tonnes (t) (metric)	to	multiply by
tonnes (metric)*****	pounds (avoirdupois)	2,205
tonnes (metric)	tons (long)	0.984
tonnes (metric)	tons (short)	1.102
tonnes (metric)	kilograms	1,000

^{*} **Troy weight** – a system of weights (i.e., 12 ounces to a pound) used for precious metals, gems, and formerly also for bread, etc.

^{**} **Avoirdupois weight** – a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

^{***} **Short ton** refers to avoirdupois weight used for the ton in the U.S. (i.e., 2,000 pounds).

^{*****} Long ton refers to the avoirdupois weight used for the ton in Great Britain (i.e., 2,240 pounds).

^{******} *Metric tonne* refers to a unit of 1,000 kilograms, equivalent to 2,205 avoirdupois pounds.

Units of MASS

To convert...

ounces (oz)	to	multiply by
ounces (troy)* ounces (troy) ounces (troy) ounces (avoirdupois)** ounces (avoirdupois) ounces (avoirdupois)	pounds (troy) grams milligrams pounds (avoirdupois) grams milligrams	0.0833 31.103 31,103 0.0625 28.35 28,350

pounds (lb)	to	multiply by
pounds (avoirdupois) pounds (avoirdupois) pounds (avoirdupois) pounds (avoirdupois)	grains ounces (avoirdupois) grams kilograms	7,000 16 453.5924 0.4536

tons (ton)	to	multiply by
tons (short)*** tons (long)**** tons (short) tons (long)	pounds (avoirdupois) pounds (avoirdupois) tonnes (metric)***** tonnes (metric)	2,000 2,240 0.907 1.016

^{*} **Troy weight** refers to a system of weights (i.e., 12 ounces to a pound) used for precious metals, gems, and formerly also for bread, etc.

^{**} **Avoirdupois weight** refers to a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

^{***} **Short ton** refers to avoirdupois weight used for the ton in the U.S. (i.e., 2,000 pounds).

^{****} Long ton refers to the avoirdupois weight used for the ton in Great Britain (i.e., 2,240 pounds).

^{*****} Metric tonne refers to a unit of 1000 kilograms which is equivalent to 2,205 avoirdupois pounds.

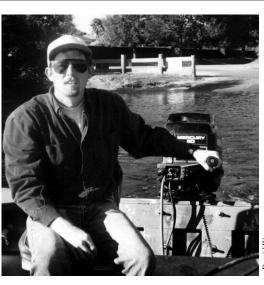
Units of POWER

To convert...

watts kilowatts 0.001 watts kilocalories/minute 0.01434 watts joules/sec 1 watts horsepower (electric) 0.00134 watts ergs/second 10.000,000	watts (w)	to	multiply by
watts ergs/second 10,000,000	watts	kilocalories/minute	0.01434
	watts	joules/sec	1

watt-hours (whr)	to	multiply by
watt-hours	ergs	36,000,000,000
watt-hours	gram calories	859.18

kilowatts (kw)	to	multiply by
kilowatts	watts (Int.)	1,000
kilowatts	joules/sec	1,000
kilowatts	horsepower (electric)	1.34


ENGLISH conversions

Units of POWER

To convert...

horsepower (hp)	to	multiply by	
horsepower (electric)	watts	746	
horsepower (electric)	kilowatts	0.746	
horsepower (electric)	joules/sec	746	

Florida LAKEWATCH regional coordinators can often be found in the field working with citizens on freshwater lakes or coastal waters. Regional coordinator Dan Willis, pictured here, is involved in various activities such as monitoring fish populations and aquatic plant communities.

vid Watson

Units of PRESSURE

To convert...

millibars (mb)	to	multiply by
millibars	atmospheres	0.000987
millibars	bars	0.001
millibars	pounds/square inch	0.0145

ENGLISH conversions

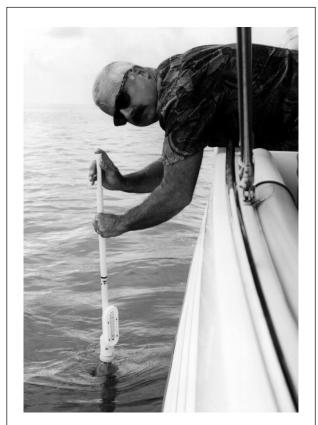
Units of PRESSURE

To convert...

pounds per square inch (psi)	to	multiply by
psi	atmospheres	0.068
psi	bars	0.0689
psi	grams/square cm	70.3
psi	millibars	68.9

Units of TEMPERATURE

To convert...


degrees Celsius (°C)	to	multiply by
Celsius	Fahrenheit	(°C x 9/5) + 32

ENGLISH conversions

Units of TEMPERATURE

To convert...

degrees Fahrenheit (°F)	to	multiply by
Fahrenheit	Celsius	(°F - 32) x 5/9

Florida LAKEWATCH volunteer Dave Byrd takes a temperature reading from waters adjacent to Sugarloaf Key in the lower Florida Keys.

Joe Richard

Units of VOLUME

To convert...

cubic centimeterscubic feet0.00003531cubic centimeterscubic inches0.06102cubic centimetersgallons0.0002642cubic centimetersmilliliters1cubic centimetersliters0.001	cubic centimeters (cm³)	to	multiply by
cubic centimeters cubic meters 0.000001	cubic centimeters cubic centimeters cubic centimeters cubic centimeters	cubic inches gallons milliliters liters	0.06102 0.0002642 1 0.001

to	multiply by
cubic inches	0.0610
ounces	0.0338
pints	0.00211
liters	0.001
cubic centimeters	1
	cubic inches ounces pints liters

liters (L)	to	multiply by
liters	cubic feet	0.03531
liters	gallons	0.2642
liters	quarts	1.0567
liters	milliliters	1,000
liters	cubic centimeters	1,000
liters	cubic meters	0.001

multiply by
0.00081
35.31
1.308
264.2
1,000

Florida LAKEWATCH volunteers may use a variety of graduated cylinders for measuring water samples for the filtering process. The smaller graduated cylinder allows one to measure and filter smaller amounts of water. This is particularly helpful to volunteers monitoring waterbodies with an abundance of algae in the water, as they won't need to filter as much water to obtain a chlorophyll sample.

ENGLISH conversions

To convert...

cubic inches (in³)	to	multiply by
cubic inches	cubic centimeters	16.39
cubic inches	cubic meters	0.00001639
cubic inches	liters	0.0164
cubic inches	gallons	0.00433
cubic inches	quarts	0.0173
cubic inches	pints	0.0346

cubic feet (ft³)	to	multiply by
cubic feet	cubic meters	0.02832
cubic feet	liters	28.32
cubic feet	acre-feet	0.0000230
cubic feet	gallons	7.48052
cubic feet	quarts	29.9

cubic feet/second (ft³/sec)	to	multiply by
cubic feet/second	gallons (U.S.)/minute	448.83117
cubic feet/second	liters/minute	1698.963
cubic feet/second	liters/second	28.31605

gallons (gal)	to	multiply by
gallons	cubic centimeters	3,785
gallons	cubic feet	0.1337
gallons	cubic meters	0.003785
gallons	liters	3.785
gallons of water	pounds of water	8.3452
gallons	quarts	4
gallons	pints	8

quarts (qt)	to	multiply by
quarts	cubic centimeters	946.4
quarts	cubic feet	0.03342
quarts	cubic meters	0.0009465
quarts	liters	0.9463
quarts	gallons	0.25
quarts	pints	2
quarts	ounces	32

Units of Volume

To convert...

pints (pt)	to	multiply by
pints pints pints pints pints	cubic centimeters cubic feet cubic meters liters	473.2 0.0167 0.000473 0.473
pints pints	gallons ounces	0.125 16

ounces (oz)	to	multiply by
ounces	cubic centimeters	29.57
ounces	liters	0.02957
ounces	pints	0.0625
ounces	quarts	0.03125
ounces	gallons	0.00781
	-	

acre feet (acre-ft)	to	multiply by
acre-feet	cubic feet	43,560
acre-feet	gallons	325,851
acre-feet	cubic yards	1,613.3
acre-feet	cubic meters	1,233.5

cubic yards (yd³)	to	multiply by
cubic yards	cubic feet	27
cubic yards	gallons	201.97
cubic yards	liters	764.5

Florida LAKEWATCH volunteers collect water samples in two different sized bottles. The larger bottle shown here on the left holds up to 500 milliliters (ml) of water and is used for coastal monitoring. The smaller 250–ml bottle on the right is used for freshwater sampling.

Part IV A Glossary of Commonly Used Metric and English Conversion Factors

Florida LAKEWATCH regional coordinators Jeanette Lamb and David Watson collect aquatic plant data in Crystal River. The technique involves throwing a quarter-meter square into the water and letting it sink to the bottom. Plants are then collected from within the quarter-meter square frame, identified, and then weighed to obtain an average plant biomass data.

To convert	to	multiply by
acres	hectares	0.4047
acres	square meters	4,047
acres	square feet	43,560
acres	square yards	4,840
acre-feet	cubic feet	43,560
acre-feet	gallons	325,851
acre-feet	cubic yards	1,613.3
acre-feet	cubic meters	1,233.5
Celsius	Fahrenheit	$(^{\circ}\text{C x }9/5) + 32$
centimeters	feet	0.03281
centimeters	inches	0.39370
centimeters	meters	0.01
cubic centimeters	cubic feet	0.00003531
cubic centimeters	cubic inches	0.06102
cubic centimeters	gallons	0.0002642

Γο convert	to	multiply by
cubic centimeters	milliliters	1
cubic centimeters	liters	0.001
cubic centimeters	cubic meters	0.000001
cubic feet	cubic meters	0.02832
cubic feet	liters	28.32
cubic feet	acre-feet	0.0000230
cubic feet	gallons	7.48052
cubic feet	quarts	29.92
cubic feet/second	gallons/minute (U.S.)	448.83117
cubic feet/second	liters/minute	1698.963
cubic feet/second	liters/second	28.31605
cubic inches	cubic centimeters	16.39
cubic inches	cubic meters	0.00001639
cubic inches	liters	0.0164
cubic inches	gallons	0.00433
cubic inches	quarts	0.0173
cubic inches	pints	0.0346
cubic meters	acre-feet	0.00081
cubic meters	cubic feet	35.31
cubic meters	cubic yards	1.308
cubic meters	gallons	264.2
cubic meters	liters	1000
cubic yards	cubic feet	27
cubic yards	gallons	201.97
cubic yards	liters	764.5
ergs	gram calories	0.00000002389
ergs	kilocalories	0.00000000002389
ergs/second	kilocalories/minute	0.00000001433
Fahrenheit	Celsius	$(^{\circ}F - 32) \times 5/9$
fathoms	meters	1.8288
fathoms	feet	6
feet	centimeters	30.48
feet	meters	0.3048
feet	kilometers	0.0003048
feet	inches	12
feet	fathoms	0.1667
feet	miles (statute)*	0.001893

^{*} Statute mile – a unit of distance used on land in the English speaking countries equal to 5,280 feet or 1,760 yards.

To convert	to	multiply by
foot-candles	lumens/square meter	10.764
gallons gallons gallons gallons gallons gallons gallons gallons gallons	cubic centimeters cubic feet cubic meters liters quart pints pounds of water	3,785 0.1337 0.003785 3.785 4 8 8.3452
gallons (U.S.)/minute gallons (U.S.)/minute	cubic feet/second liters/second	0.002228 0.06308
grains/gallon (U.S.)	parts/million	17.119
grams grams/centimeter grams/liter grams/square centimeter gram calories	milligrams micrograms kilograms grains ounces (avoirdupois)* ounces (troy)** pounds (avoirdupois) pounds/inch parts/million pounds/square foot ergs	1,000 1,000,000 0.001 15.43 0.03527 0.03215 0.002205 0.0056 1,000 2.0481 0.00000041868
hectares hectares hectares	acres square feet square meters	2.471 107,639 10,000
horsepower <i>(electric)</i> horsepower <i>(electric)</i> horsepower <i>(electric)</i>	watts kilowatts joules/sec	746 0.746 746
inches inches inches inches	centimeters meters fathoms yards	2.54 0.0254 0.01389 0.0278
joules joules	ergs kilocalories	10,000,000 0.0002389

^{*} Avoirdupois weight – a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

To convert	to	multiply by
kilograms kilograms kilograms kilograms kilograms	ounces (troy)* pounds (avoirdupois)** tons (short)*** tons (long)**** grams	32.15 2.205 0.0011 0.000984 1,000
kilograms/cubic meter kilograms/meter kilograms/square meter	pounds/cubic foot pounds/foot pounds/square foot	0.06243 0.6720 0.2048
kilometers kilometers kilometers kilometers kilometers/hour	feet (U.S.) miles (statute)**** centimeters meters feet/second	3,281 0.6214 100,000 1,000 0.9113
knots	miles (statute)/hour	1.151
liters liters liters liters liters liters liters	cubic feet gallons quarts milliliters cubic meters cubic feet/second	0.03531 0.2642 1.057 1,000 0.001 0.0005886
lumens/square foot	foot-candles	1
lux	foot-candles	0.0929
meters	feet inches miles (statute) yards millimeters centimeters kilometers feet/second	3.281 39.37 0.0006214 1.094 1,000 100 0.001 0.05468
micrometers	meters	0.000001

^{*}Troy weight refers to a system of weights used for precious metals and gems (formerly also for bread, etc.).

^{**}Avoirdupois weight is a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

^{***}Short ton refers to avoirdupois weight used for the ton in the U.S. (i.e., 2,000 pounds).

^{*****}Long ton refers to the avoirdupois weight used for the ton in Great Britain (i.e., 2,240 pounds).

^{*****}Statute mile is a unit of distance used on land in the English speaking countries equal to 5,280 feet or 1,760 yards.

To convert	to	multiply by
micrograms micrograms	pounds (<i>avoirdupois</i>)* milligrams grams	0.000000002205 0.001 0.000001
micrograms/liter micrograms/liter micrograms/liter	milligrams/cubic meter milligrams/liter ppm	1 0.001 0.001
micromoles/liter micromoles/liter	parts/million milligrams/liter	(molecular weight) x 0.001 (molecular weight) x 0.001
miles (statute) miles (statute) miles (statute) miles (statute) miles (statute)	kilometers meters miles (nautical)** feet yards	1.609 1,609 0.8684 5,280 1,760
millibars millibars millibars	atmospheres bars pounds/square inch	0.000987 0.001 0.0145
milligrams milligrams milligrams milligrams milligrams milligrams	grains ounces (avoirdupois) ounces (troy)*** pounds micrograms grams	0.01543 0.00003527 0.00003215 0.000002205 1,000 0.001

Conversion Factors Used in Water Management

To Convert	to	multiply by
mg/L	μg/L	1,000
μg/L	mg/L	0.001
μM/L	mg/L	(molecular weight) x 0.001
mg/m³	mg/L	0.001
mg/m³	μg/L	1
ppm	mg/L	1
ppm	ppb	1,000
ppb	ppm	0.001
pounds/acre	kg/ha	1.12

^{*}Avoirdupois weight is a system of weights used (i.e., Great Britain, U.S.) for goods other than gems, precious metals, and drugs.

^{**}Nautical mile – officially fixed in the United States at 6,080.20 feet and in Great Britain at 6,080 feet.

^{***}Troy weight refers to a system of weights used for precious metals and gems (formerly also for bread, etc.)

Γο convert	to	multiply by	
milligrams/cubic meter	micrograms/liter	1	
milligrams/cubic meter	milligrams/liter	0.001	
milligrams/liter	parts/billion	1,000	
milligrams/liter	parts/million	1	
milligrams/liter	grains/gallon (U.S.)	0.0584	
milligrams/liter	micrograms/liter	1,000	
milligrams/liter	milligrams/cubic meter	1,000	
milliliters	cubic inches	0.061	
milliliters	ounces	0.0338	
milliliters	pints	0.00211	
milliliters	liters	0.001	
milliliters	cubic centimeters	1	
millimeters	feet	0.003281	
millimeters	inches	0.03937	
millimeters	microns	1,000	
millimeters	centimeters	0.1	
millimeters	meters	0.001	
millimicrons	meters	0.000000001	
moles/liter	parts/million	(molecular weight) x 1,00	
moles/liter	milligrams/liter	(molecular weight) x 1,00	
million gallons/day	cubic feet/second	1.54723	
ounces (troy)*	pounds (troy)	0.0833	
ounces (troy)	grams	31.104	
ounces (troy)	milligrams	31,104	
ounces (avoirdupois)**	pounds (avoirdupois)	0.0625	
ounces (avoirdupois)	grams	28.35	
ounces (avoirdupois)	milligrams	28,350	
parts/billion	micrograms/liter	1	
parts/billion	milligrams/liter	0.001	
parts/million	grains/gallon (U.S.)	0.0584	
parts/million	parts/billion	1,000	
parts/million	parts/thousand	0.001	
parts/million	micrograms/liter	1,000	
parts/million	milligrams/liter	1	
parts/thousand	parts/billion	1,000,000	
parts/thousand	parts/million	1,000	
parts/thousand	milligrams/liter		

^{*} Troy weight refers to a system of weights used for precious metals and gems (formerly also for bread, etc.)

^{**} Avoirdupois weight is a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

To convert	to	multiply by	
parts/thousand	micrograms/liter	1,000,000	
pints	cubic centimeters	473.2	
pints	cubic feet	0.0167	
pints	cubic meters	0.000473	
pints	liters	0.473	
pints	gallons	0.125	
pints	ounces	16	
pounds (avoirdupois)*	grains	7,000	
pounds (avoirdupois)	grams	453.5924	
pounds (avoirdupois)	kilograms	0.4536	
pounds (avoirdupois)	ounces (avoirdupois)	16	
pounds of water/minute	cubic feet/minute	0.01602	
pounds of water/minute	cubic inches/minute	27.68	
pounds of water/minute	gallons (<i>U.S.</i>)/minute	0.1198	
pounds/foot	kilograms/meter	1.488	
pounds/inch	grams/centimeter	178.6	
pounds/square foot	inches of mercury	0.01414	
pounds/square inch (psi)	atmospheres	0.068	
pounds/square inch (psi)	bars	0.0689	
pounds/square inch (psi)	grams/square cm	70.3	
quarts	cubic centimeters	946.4	
quarts	cubic feet	0.03342	
quarts	cubic meters	0.0009464	
quarts	liters	0.9463	
quarts	gallons	0.25	
quarts	pints	2	
quarts	ounces	32	
square centimeters	square feet	0.001076	
square centimeters	square inches	0.155	
square centimeters	square meters	0.0001	
square feet	acres	0.00002296	
square feet	square centimeters	929	
square feet	square meters	0.0929	
square inches	square centimeters	6.452	
square inches	square meters	0.0006452	
square inches	square feet	0.00694	

* Avoirdupois weight is a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

²⁵

To convert	to	multiply by	
square kilometers	acres	247.1	
square kilometers	square feet	10,763,910	
square kilometers	square miles	0.3861	
square meters	acres	0.0002471	
square meters	square centimeters	10,000	
square meters	square feet	10.76	
square meters	square miles	0.0000003861	
square meters	square yards	1.196	
square miles	acres	640	
square miles	square kilometers	2.59	
square miles	hectares	259	
square miles	square meters	2,589,988.1	
square yards	square meters	0.8361	
square yards	hectares	0.00008361	
square yards	acres	0.000207	
tons (short)*	pounds (avoirdupois)***	2,000	
tons (long)**	pounds (avoirdupois)	2,240	
tons (short)	tonnes (metric)	0.907	
tons (long)	tonnes (metric)	1.016	
tonnes	pounds	2,205	
tonnes	tons (long)	0.984	
tonnes	tons (short)	1.102	
tonnes	kilograms	1,000	
watts	kilowatts	0.001	
watts	kilocalories/minute	0.01433	
watts	joules/sec	1	
watts	horsepower (electric)	0.00134	
watts	ergs/second	10,000,000	
watt-hours	ergs	36,000,000,000	
watt-hours	gram calories	859.85	
yards	centimeters	91.44	
yards	kilometers	0.0009144	
yards	meters	0.9144	
yards	feet	3	
yards	fathoms	0.5	

 $^{^{*}}$ A **short ton** refers to avoirdupois weight used for the ton in the U.S. (i.e., 2,000 pounds).

^{**} A long ton refers to the avoirdupois weight used for the ton in Great Britain (i.e., 2,240 pounds).

^{***} Avoirdupois weight is a system of weights used in Great Britain and the U.S. for goods other than gems, precious metals, and drugs.

Part V Elements and Atomic Weights

Element ~ One dictionary defines it as a substance with "a chemical composition that is in a class unto itself here on earth and even in this universe." Another defines it as a substance containing "atoms of only one kind that singly or in combination constitute all matter."

To put it simply, elements are the basic building blocks of the chemical and physical world, as we know it.

While many of us remember this basic concept from high school chemistry class, details such as the name, abbreviation, and atomic weight³ of each element are probably a bit fuzzy. This is understandable as there are more than 100 elements recognized by the international scientific community. Fortunately, a list of elements and their international atomic weights can be found in most chemistry books, in some dictionaries, and at a number of on-line web sites.⁴ (A good reference source for anyone working in the aquatic sciences is *STANDARD METHODS for the Examination of Water and Wastewater.*) For your convenience however, we've provided a table of international relative atomic weights in this section along with a brief explanation of how relative atomic weights are determined (page 29) and how they are used to calculate the molecular weight of the various chemical compounds found on earth (page 30).

Why do we need to know about elements and their atomic weights?

For starters, many elements, including calcium, magnesium, nitrogen, phosphorus and silicon, are considered to be important nutrients found in aquatic environments. Familiarity with their names and abbreviations is useful from a communications perspective as scientists commonly use abbreviated terminology in their journal articles, graphs, charts, and lectures. For example, when a scientist discusses the effects of "N" or "P" in a lake system, an educated reader/listener will know that the scientist is referring to the elements nitrogen or phosphorus, respectively.

Secondly, knowledge of an element's atomic weight is required for accuracy when converting from one unit of measure to another. A marine scientist, for instance, might record nutrient concentrations in units of **micromoles per liter** (μ M/L) while a freshwater scientist may use **milligrams per liter** (μ g/L) or **micrograms per liter** (μ g/L). If either scientist wants to combine databases for comparison, conversions would need to be made to standardize the units of measure. To make the conversions, the atomic weight of each element, such as nitrogen or phosphorus, would have to be known. An explanation of how to do these conversions is provided in Section VII on page 35 of this booklet. And remember, if you should encounter any difficulties converting from one unit of measure to another, don't feel bad as this can be a difficult task even for professionals!

³ An element's atomic weight is approximately equal to the number of protons and neutrons found in an atom.

⁴ Atomic Weights of the Elements. 1999. World Wide Web version prepared by G.P. Moss, originally from a file provided by D.R. Lide. http://www.chem.qmw.ac.uk/iupac/AtWt/

International Relative* Atomic Weights

Element	Symbol	Atomic Weight	Element	Symbol	Atomic Weight
Actinium	Ac	227**	Lawrencium	Lr	262
Aluminum	Al	26.981538	Lead	Pb	207.2
Americium	Am	243	Lithium	Li	6.941
Antimony	Sb	121.760	Lutetium	Lu	174.967
Argon	Ar	39.948	Magnesium	M	24.3050
Arsenic	As	74.92160	Manganese	Mn	54.938049
Astatine	At	210	Meitnerium	Mt	268
Barium	Ba	137.327	Mendelevium	Md	258
Berkelium	Bk	247	Mercury	Hg	200.59
Beryllium	Be	9.012182	Molybdenum	Mo	95.94
Bismuth	Bi	208.98038	Neodymium	Nd	144.24
Bohrium	Bh	264	Neon	Ne	20.1797
Boron	В	10.811	Neptunium	Np	237
Bromine	Br	79.904	Nickel	Ni	58.6934
Cadmium	Cd	112.411	Niobium	Nb	92.90638
Calcium	Ca	40.078	Nitrogen	N	14.0067
Californium	Cf	251	Nobelium	No	259
Carbon	C	12.0107	Osmium	O	190.23
Cerium	Ce	140.116	Oxygen	Os	15.9994
Cesium	Cs	132,9054	Palladium	Pd	106.42
Chlorine	Cl	35.453	Phosphorus	P	30.973761
Chromium	Cr	51.9961	Platinum	Pt	195.078
Cobalt	Co	58.933200	Plutonium	Pu	244
Copper	Cu	63.546	Polonium	Po	209
Curium	Cm	247	Potassium	K	39.0983
Dubnium	Db	262	Praseodymium	Pr	140.90765
Dyprosium	Dy	162.50	Promethium	Pm	145
Einsteinium	Es	252	Protactinium	Pa	231.03588
Erbium	Er	167.259	Radium	Ra	226
Europium	Eu	151.964	Radon	Rn	222
Fermium	Fm	257	Rhenium	Re	186.207
Fluorine	F	18.9984032	Rhodium	Rh	102.90550
Francium	Fr	223	Rubidium	Rb	85.4678
Gadolinium	Gd	157.25	Ruthenium	Ru	101.07
Gallium	Ga	69.723	Rutherfordium	Rf	267
Germanium	Ge	72.64	Samarium	Sm	150.36
Gold	An	196.96655	Scandium	Sc	44.955910
Hafnium	Hf	178.49	Selenium	Se	78.96
Hassium	Hs	277	Seaborgium	Sg	266
Helium	He	4.002602	Silicon	Si	28.0855
Holmium	Но	164.93032	Silver	Ag	107.8682
Hydrogen	Н	1.00794	Sodium	Na	22.989770
Indium	In	114.818	Strontium	Sr	87.62
Iodine	I	126.90447	Sulfur	S	32.065
Iridium	Ir	192.217	Tantalum	Ta	180.9479
Iron	Fe	55.845	Technetium	Tc	98
	Kr	83.80	Tellurium	Te	127.60
Krypton Lanthanum			Terbium	Tb	
Lanunanum	La	138.9055	· reroium	10	158.92534

International Relative* Atomic Weights

Element	Symbol	Atomic Weight	Element	Symbol	Atomic Weight
Thallium	Tl	204.3833	Yttrium	Y	88.90585
Thorium	Th	232.0381	Zinc	Zn	65.39
Thulium	Tm	168.93421	Zirconium	Zr	91.224
Tin Titanium	Sn Ti	118.710 47.867	* Based on the assigned relative atomic mass of $^{12}C=12$.		
Tungsten	W	183.84	** Relative weights shown here as whole numbers indicate the mass number of the longest-lived isotope of that element. Note: The atomic weights you may see here and in other publications may vary slightly. This is due to each publisher rounding off the numbers differently. It's also important to note that atomic weight values are periodically re-determined; this may also contribute to minor differences in weights shown.		
Ununilium	Uun	281			
Ununquadium	Uuq	289			
Uranium	U	238.02891			
Vanadium	V	50.9415			
Xenon	Xe	131.293			
Ytterbium	Yh	173.04			

Relative Atomic Weights

Before the age of nuclear technology, scientists were limited to studying chemical reactions that involved large numbers of atoms at once, as there were no methods for isolating a single atom to determine its weight. However, scientists were able to devise a system for assigning weights to the elements by comparing how heavy a given atom was in relation to other atoms. This is known as the system of **relative atomic weights**. The following is a brief explanation of how it works.

The current practice is to express the weight of a given element as it relates to the weight of some known standard. In recent years, the accepted standard is a carbon isotope known as **carbon-12** with an assigned weight of 12 atomic mass units.*

Using only one of these twelve units (i.e., $1/12^{th}$), we can assign atomic weights for all the other elements.

In other words, when expressing the atomic weight of an element, we simply need to express the mass of that element relative to the mass of one-twelfth of a carbon-12 atom. These units of weight are referred to as "atomic mass units."

Take hydrogen, for example. The relative atomic weight of hydrogen is expressed as **1.008**. This means that the mass of a hydrogen atom is slightly greater than one-twelfth the mass of a carbon-12 atom.** *See illustration below*.

We can use the element copper (**Cu**) as a second example. Copper has a relative atomic weight of **63.546**. This means that the mass of a copper atom is nearly 64 times that of one carbon-12 atomic unit (i.e., 1/12th).

A hydrogen atom is assigned an atomic weight of 1 (rounded from 1.008) because the mass of a hydrogen atom is roughly equal to 1/12th the mass of a carbon-12 atom (depicted on the right).

This cluster of 12 protons and neutrons represents the total mass of a carbon-12 atom. The sphere that is circled represents one atomic unit (i.e., 1/12th) of that atom. This unit is the basis for determining the relative atomic weight for all other elements.

^{*} To further visualize this, imagine 12 individual spheres clustered together as seen in the figure below.

^{**} The expressed weight of 1.008 is the **average** weight of naturally occurring hydrogen; the reason it is not exactly 1.000 is that a small fraction of naturally occurring hydrogen atoms have a weight of 2, rather than 1.

Part VI Interpreting Water Chemistry Formulas and Calculating Molecular Weights

Now that we've got a better understanding of relative atomic weights (see page 29), we can begin to consider chemical compounds and learn how to interpret them.

It's important to be able to interpret such formulas because elements are rarely found alone in nature. More often than not, they combine with other elements to form chemical substances or compounds. For example, let us consider one of the most commonly known compounds — water. The abbreviation alone tells us that a water molecule $(\mathbf{H}_2\mathbf{0})$ is comprised of two atoms of hydrogen (\mathbf{H}_2) and one atom of oxygen (\mathbf{O}) . When combined with one more atom of oxygen, we end up with a compound known as hydrogen peroxide $(\mathbf{H}_2\mathbf{O}_2)$.

We can find the molecular weight of a chemical compound by totaling up the weight, in atomic mass units, of all the atoms in that given formula.

We use molecular weights to describe how many grams are in one **mole*** of a substance. When dealing with concentrations of chemicals, it's often helpful to know the molecular weight of a specific compound so that we can evaluate how it is interacting with other substances. While you may not have the opportunity to do this in a laboratory, it is still helpful to be able to interpret the language used by the chemists. Learning to calculate the molecular weight of a substance is the first step toward a better understanding of water chemistry. To help you in this endeavor, we've provided several practice exercises below.

Step 1

Before we can calculate the molecular weight of a chemical compound, we need to know how many atoms are present for each element.

For the purposes of this exercise, we've chosen three chemical compounds that are commonly associated with water chemistry.

For NaCl (sodium chloride) there will be:

- one atom of sodium (Na)
- one atom of chlorine (CI)

For **CaCO**₃ (calcium carbonate) there will be:

- one atom of calcium (Ca),
- one atom of carbon (C)
- three atoms of oxygen (O)

For $\mathbf{Fe(OH)}_3$ (hydrated ferric hydroxide) there will be:

- one atom of iron (Fe),
- three atoms of oxygen (O)
- three atoms of hydrogen (H)

Note: If a subscript follows an atom abbreviation with no parenthesis, that number tells us how many atoms are present for that element. If parentheses are involved, you must multiply each individual subscript on the inside of the parentheses by the subscript number on the outside.

^{*}A mole is the standard unit of measure used by chemists for communicating quantities of a chemical compound; a mole is also referred to as a **gram molecule**. The term "mole" is abbreviated as "mol" or "M."

Step 2

To calculate the molecular weight of a substance or compound, you must first know the atomic weight of each element within the compound.

International Relative Atomic weights can be found in the table on pages 28-29. For your convenience, we've provided atomic weights for the compounds used in this exercise.

Step 3

Once you have a relative atomic weight for each element in a compound, multiply the weight of each atom by the number of atoms that are present in the formula, then add the answers.

One atom of sodium (Na) =
$$1 \times 22.989770 = 22.989770$$

One atom of chlorine (Cl) = $1 \times 35.453 = 35.453$

Add these values for the molecular weight:

The answer **58.44277** represents the molecular weight for one mole of **NaCl** in atomic mass units (amu).


```
One atom of calcium (Ca) = 1 \times 40.078 = 40.078
One atom of carbon (C) = 1 \times 12.0107 = 12.0107
Three atoms of oxygen (O) = 3 \times 15.9994 = 47.982
```

Add these values for the molecular weight:

The answer 100.0707 represents the molecular weight for one mole of CaCO₃.

Fe(OH),

Add these values for the molecular weight:

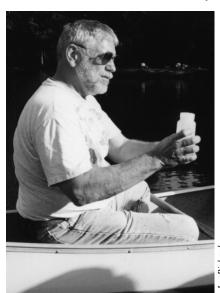
The answer 106.85082 represents the molecular weight for one mole of Fe(OH)3.

Part VII Different Ways of Expressing a Chemical Compound

any elements that are important to lakes are found in more than one chemical form. **Nitrogen** (**N**) is a good example. It can combine with two oxygen atoms to form **nitrites** (expressed by the compound formula **NO**,-1) or it can combine with three

oxygen atoms to form nitrates (NO₃-1). Ammonium ions (NH₄+1) are formed when one nitrogen atom is combined with four hydrogen atoms. Nitrogen can also be found in various organic molecules produced by living organisms in lakes.⁵

The sum of these various nitrogen compounds is known as **total nitrogen**. We often rely on total measurements because some elements, nitrogen included, tend to continually transfer from one form to another through the metabolism of aquatic organisms, making it difficult to track individual chemical compounds. This is true for phosphorus as well. Florida LAKEWATCH measures total phosphorus concentrations for the same reason. These compounds are


commonly measured in concentrations of milligrams per liter (mg/L) or micrograms per liter (μ g/L).

There are times however, when we may want to isolate and measure a specific chemical compound. A case in point is the standard that has been set for nitrates in drinking water: In most communities in the United States, the maximum amount of nitrates allowed in drinking water is considered to be **45 mg/L NO₃**. (While occurrences have been rare, it's been found that in small babies, higher nitrate levels can interfere with the ability of the blood to carry oxygen,

resulting in a phenomenon known as the *blue baby syndrome*.)

If we made a separate measurement of just the nitrogen contained in the nitrate formula mentioned above, we would express the concentration as 10.2 mg/L NO₂-N. This is known as a nitrate-nitrogen formula. An interpretation of this particular formula tells us that there are **10.2 mg** of nitrogen contained within the nitrates in a liter of water. The "-N" symbol found in the latter portion of the formula tells us that the number value (10.2 mg/L) is describing the weight of nitrogen only contained in that compound.

A similar approach would be used if we were to make a

Because nitrogen compounds are constantly changing within an aquatic environment, some water monitoring programs, including Florida LAKEWATCH, prefer to measure total nitrogen concentrations. Such information helps scientists estimate the potential for biological productivity in a waterbody.

5 Organic molecules are formed by the actions of living things and/or have a carbon backbone. Methane (CH_4) is an example, although it's important to note that not all methane is formed by living organisms.

separate measurement of the nitrogen contained in an ammonium compound. The formula would be expressed as **mg/L NH₄-N** and is known as an **ammonium-nitrogen** formula. And if we wanted to measure the weight of nitrogen only as it combines with organic molecules, we would use an **organic-nitrogen** formula expressed as **mg/L organic-N**.

As you can see from the examples above, a nitrate formula is expressed differently than a nitrate-nitrogen formula, even though they both represent measurements of nitrates found in one liter of water.

To convert units of nitrates to units of nitrate-nitrogen we need to multiply by a conversion factor consisting of the atomic weight of nitrogen divided by the combined atomic weights of one nitrogen and three oxygen atoms. An example of this conversion process is provided below.

Note: The same approach can be used for other chemical compounds found in water. For instance, there may be times when one would want to isolate the weight of phosphorus contained in phosphates or the weight of sulfur contained in sulfates, etc.

Converting from nitrates to nitrate-nitrogen

 $45 \text{ mg/L NO}_3 = 45 \text{ x } (14^* \div (14 + 48^{**})) = ?$ (original nitrate formula) $45 \text{ mg/L NO}_3 = 45 \text{ x } 0.226 = 10.2 \text{ mg/L NO}_3 - \text{N}$ (nitrate-nitrogen formula)

The nitrate formula (top left) tells us that there is a total concentration of 45 mg of nitrates in a liter of water. After doing the conversion, the nitrate-nitrogen formula (bottom right) tells us that out of the 45 mg/L of nitrates, there are 10.2 mg of actual nitrogen within that same liter of water. It should be noted that the nitrate-nitrogen formula is currently being used by most water chemistry labs as the preferred way to express this relationship.

^{* 14} is the relative atomic weight for nitrogen (rounded from 14.00674).

^{**} The number 48 was attained by multiplying the relative atomic weight of a single oxygen atom (16) by 3, as there are three oxygen atoms in a nitrate molecule.

Part VIII Using Atomic Weights to Compare Different Measures of Concentration

Kelly Schulz (left) processes total phosphorus samples for the Florida LAKEWATCH program at a UF/IFAS water chemistry laboratory. The freshwater total phosphorus concentrations she records into the LAKEWATCH database are expressed as micrograms per liter (µg/L). Erin Bledsoe (right) prepares a Van Dorn sampler before lowering it into marine offshore waters for a sample. Phosphorus and nitrogen concentrations found in saltwater samples are often expressed as micromoles per liter (µM/L). If the two were to be compared, conversions would be needed.

Ithough most aquatic scientists have adopted the International System (SI) for standardizing scientific units of measure, it doesn't necessarily mean they will use the same units of measure for the same things. For example, scientists who study saltwater systems (i.e., oceanographers, etc.) and those that study freshwater systems (i.e., limnologists) often express their work differently. Oceanographers tend to use the micromole per liter (μ M/L) as a unit of measure in their analyses while limnologists tend to use the milligram per liter (μ g/L) or microgram per liter (μ g/L) units of measure for their studies.

This isn't a problem unless one scientist decides to compare his or her data with those of another, in which case conversions must be made so that one can compare "apples with apples." See the examples on the next page for an explanation on how atomic weights are used to convert from one unit of measure to another.

Converting micromoles per liter (µM/L) to micrograms per liter (µg/L)

To convert a concentration of an element given as **micromoles per liter** (μ M/L) to units of **micrograms per liter** (μ g/L), you would simply **multiply** the concentration in **micromoles** times the relative atomic weight of the element. For example, to convert a phosphorus concentration of **10** μ M P/L to units of μ g P/L, you would multiply **10** times the relative atomic weight for phosphorus (**31**)* to get **310** μ g/L of phosphorus. *Notice how the abbreviation for phosphorus (P) is expressed in the equation below.*

10 μ M P/L = 10 (micromoles) X 31 (relative atomic weight for phosphorus) = 310 μ g P/L

* Using the table on page 28 we can see that the relative atomic weight for phosphorus is 31 (rounded from 30.973761).

Converting micrograms per liter (µg/L) to micromoles per liter (µM/L)

To convert a concentration of an element given as **micrograms per liter** (μ g/L) to units of **micromoles per liter** (μ M/L), you would **divide** the concentration in micrograms by the relative atomic weight of the element. For example, to convert a nitrogen concentration of **100** μ g/L to units of μ M/L you would divide **100** by nitrogen's relative atomic weight of **14** to get **7.142** μ M/L of nitrogen. Notice how the abbreviation for nitrogen (N) is expressed in the equation below.

100 μ g N/L = 100 (micrograms) ÷ 14 (relative atomic weight for nitrogen) = 7.142 μ M N/L

* Using the table on page 28 we can see that the relative atomic weight for nitrogen is 14 (rounded from 14.0067).

Speaking in Molecular Terms

The following are terms that you are likely to hear within the water chemistry arena:

Atomic weight is approximately equal to the number of protons and neutrons found in an atom.

Gram atomic weight refers to the weight of an element in units of grams. Along those same lines, if one were to express the weight of an element in units of milligrams, you would then refer to it as the milligram atomic weight.

Micromolar solution refers to the molecular weight of a substance expressed as "micrograms contained in one liter of water" (i.e., one-millionth of a gram molecular weight). For example a micromolar solution of phosphorus contains 31 micrograms (µg) of phosphorus in one liter of water.

Molar solution is one mole dissolved in enough water to make one liter.

Mole is the molecular weight of a substance expressed in grams; also known as a gram molecule. Chemists tend to use moles to describe chemical compounds.

Molecular weight refers to the combined (the sum) atomic weight of all the atoms in a molecule.

Relative atomic weight refers to the relative weight of each element, based on the assigned relative atomic mass of ${}^{12}C = 12$.

Selected Scientific References

- APHA. 1992. STANDARD METHODS for the examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation. Washington, DC.
- Florida LAKEWATCH. 1999. A Beginner's Guide to Water Management The ABCs (Circular 101). Descriptions of Commonly Used Terms. Florida LAKEWATCH, Department of Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, Florida.
- Florida LAKEWATCH. 2000. A Beginner's Guide to Water Management Nutrients (Circular 102). Florida LAKEWATCH, Department of Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, Florida.
- Florida LAKEWATCH. 2000. A Beginner's Guide to Water Management Water Clarity (Circular 103). Florida LAKEWATCH, Department of Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, Florida.
- Florida LAKEWATCH. 2001. A Beginner's Guide to Water Management Lake Morphometry (Circular 104). Florida LAKEWATCH, Department of Fisheries and Aquatic Sciences, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, Florida.